что исходное приближение было плохим прогнозом окончательного ответа, потому что поправки привели не к относительно малым отклонениям, а к сильным изменениям приближенной оценки. Как указывалось в предыдущих главах, наше обсуждение теории струн до этого места опиралось на теорию возмущений, в определенном смысле аналогичную той, которую использовал механик. Упоминавшееся время от времени «недостаточное понимание» теории струн так или иначе связано с применением этого приближенного метода. Чтобы лучше понять смысл последнего утверждения, рассмотрим теорию возмущений в контексте, менее абстрактном, чем в теории струн, но все же более близком к этой теории, чем пример с механиком.
Классический пример использования теории возмущений дает изучение движения Земли в Солнечной системе. На таких больших пространственных масштабах можно учитывать только гравитационное взаимодействие, однако, если не делать дополнительных приближений, возникающие уравнения будут крайне сложны. Вспомним, что и по Ньютону, и по Эйнштейну все тела оказывают гравитационное воздействие на все другие тела, так что попытка точной формулировки сразу приводит к математически неразрешимой задаче о «гравитационном перетягивании каната» Землей, Солнцем, другими планетами и, если по-честному, всеми другими небесными телами. Как нетрудно сообразить, определить точное движение Земли с учетом всех влияний невозможно. На самом деле, уже в случае трех небесных тел уравнения становятся настолько сложными, что никто не сумел полностью решить их.[115]
Тем не менее в рамках теории возмущений
Этот пример демонстрирует, насколько при использовании теории возмущений важно определить, является ли предполагаемое первое приближение
Физические процессы в теории струн порождаются фундаментальными взаимодействиями между колеблющимися струнами. Как обсуждалось в главе 6[116], в эти взаимодействия входят распады и слияния струнных петель, подобные тем, которые изображены на рис. 6.7 и продублированы для удобства читателя на рис. 12.3. Занимающиеся струнами теоретики показали, как схематическому изображению на рис. 12.3 поставить в соответствие точную математическую формулу, описывающую влияние каждой из сталкивающихся струн на движение другой. (Эта формула имеет разный вид в пяти теориях струн, но мы на время будем пренебрегать такими тонкостями.)
Рис. 12.3. Струны взаимодействуют, соединяясь и разделяясь.
Если бы не было квантовой теории, на этой формуле и заканчивалось бы изучение взаимодействия струн. Но в силу соотношения неопределенностей возникает микроскопический хаос, в котором происходит непрерывное рождение пар струна / антиструна (двух струн с противоположными колебательными модами) за счет одолженной у Вселенной энергии, и быстрая аннигиляция этих пар, в результате которой одолженная энергия возвращается Вселенной. Такие пары струн, рожденные из квантового хаоса, живущие за счет одолженной энергии и, следовательно, обязанные быстро слиться в одну петлю, называют
Схематически этот процесс изображен на рис. 12.4. Две исходные струны сливаются вместе в точке а), образуя единую петлю. Некоторое время эта петля движется, но в точке б) квантовые флуктуации приводят к рождению виртуальной пары струн, которая далее аннигилирует в точке в), и в результате снова получается одна петля.

Рис. 12.4. Квантовый хаос приводит к рождению пары струна / антиструна (б) и ее уничтожению (в), что усложняет взаимодействие.
Наконец, в точке г) эта струна отдает энергию, распадаясь на пару струн, которые разлетаются в разных направлениях. Из-за наличия одной петли в центре рис. 12.4 физики называют это «однопетлевым» процессом. Как и для взаимодействия, изображенного на рис. 12.3, для этой диаграммы можно выписать точную математическую формулу, в которой учитывается влияние рождения пары виртуальных струн на движение двух исходных.
Однако это еще не все: краткосрочные извержения виртуальных струн вследствие квантовых флуктуации могут произойти любое число раз, что приведет к рождению последовательных виртуальных пар. При этом получатся диаграммы с большим количеством петель, как показано на рис. 12.5.

Рис. 12.5. Квантовый хаос может привести к рождению и уничтожению длинных последовательностей пар струна / антиструна.
Каждая диаграмма дает простой и удобный способ описания соответствующего физического процесса. Налетающие струны сливаются, квантовый хаос вызывает раздвоение получившейся петли на виртуальную пару, струны этой пары движутся, затем аннигилируют с образованием одной петли, которая