количества градусов. Недолго думая, тепловых дел мастера ввели в науку ещё одну характеристику веществ – теплоёмкость. Это совсем просто: теплоёмкость больше у того вещества, которое вмещает больше теплотворной материи для того, чтобы, при прочих равных условиях, нагреться на одинаковое количество градусов. Стойте, стойте! Тогда, чтобы определить тепловой эффект калориметрическим способом, требуется заранее знать теплоёмкость буферного вещества! А откуда это знать? Тепловых дел мастера, не напрягаясь, дали ответ и на этот вопрос. Они быстро смекнули, что их коробчонки являются приборами двойного назначения, которые пригодны для измерения не только тепловых эффектов, но и теплоёмкостей тоже. Ведь если вы измеряете разность температур буферного вещества и знаете количество поглощённой им теплотворной материи, то искомая теплоёмкость – у вас на блюдечке! Так и повелось: тепловые эффекты измеряли на основе знания теплоёмкостей, а теплоёмкости узнавали на основе измерений тепловых эффектов. И если кто-то, не по злому умыслу, а чисто из любознательности, спрашивал: «А что вы измерили сначала – теплоту или теплоёмкость?» - то ему отвечали в таком духе: «Слушай, умник, а что было сначала – курица или яйцо?» - и умник понимал, что не надо задавать дурацкие вопросы.
Короче: если не задавать дурацких вопросов, то всё было распрекрасно в калориметрическом методе, за исключением одного нюанса. Этот метод с самого начала был основан на ключевом постулате о том, что теплотворная материя способна перетекать только от более нагретых тел к менее нагретым. Тогда никто ещё не додумался до простой вещи: если этот ключевой постулат верен, то со временем температуры всех тел выровняются – и, как говорится, аминь. Впрочем, если кто и додумался бы, то ему резонно возразили бы, что Божий замысел не может вмещать такой глупости – и на этом все бы успокоились.
Словом, концепция теплотворной материи в науке уютно пригрелась. Поэтому наш Ломоносов, со своей деревенской простотой, в эту идиллию не вписался. Он ведь не придерживался тех или иных концепций, он их исследовал – и предлагал взамен более адекватные. В «Размышлениях о причине теплоты и холода» (1744) Ломоносов достаточно ясно сформулировал причину теплоты – которая заключается «
По сравнению с этими убийственными доводами, всё учение о теплотворной материи было детским лепетом – это понимали даже подмастерья в химических лабораториях. Но академические мэтры не признавали правоту Ломоносова – они мудро хранили гробовое молчание. «По делу нам возразить нечего, - прикидывали они. – Но не может же такого быть, что мы все дураки, а он один – гений». Причём, эта мысль навязчиво приходила во все академические головы. Хотя академики не сговаривались, внешне это проявлялось как стопудовый мировой заговор. И это всё были честнейшие и благороднейшие люди. Как на подбор – один другого честнее и благороднее. Честный на честном ехал и благородным погонял.
Взять хотя бы Эйлера, который считался другом Ломоносова. Когда Парижская Академия наук объявила конкурс на лучшую работу о природе теплоты, то выиграл конкурс и получил премию Эйлер, который в представленной работе писал: «
А факты вон какие. В те времена у естествоиспытателей была мода: смешивать такое-то количество холодной воды с таким-то количеством горячей – и определять результирующую температуру смеси. Опыт подтверждал формулу Рихмана: значение температуры было средним взвешенным – в частном случае, при равных количествах холодной и горячей воды, оно было средним арифметическим. И вот: химик Блэк, а затем ещё и химик Вильке, затеяли проверить формулу Рихмана для случая смешивания горячей воды не с холодной водой, а со льдом – решив, что, в точке плавления, «что лёд, что вода – одна лабуда». Результат вышел – сегодня это можно точно сказать – совершенно умопомрачительный. Конечная температура воды для случая исходных равных весов льда при 0оС и воды при 70оС оказалась равной далеко не среднему арифметическому – она оказалась равной 0оС. Умопомрачительно? А то! Умы помрачились настолько, что с восторгом отдались концепции о «скрытой теплоте плавления льда». По этой концепции, для расплавления льда мало нагреть его до температуры плавления, на что потребуется сообщение ему некоторого количества теплотворной материи, в соответствии с его теплоёмкостью – ещё потребуется впендюрить в лёд дополнительное огромное количество теплотворной материи, которая пойдёт на само плавление. Правда, при плавлении, температура льда не изменяется, и термометры не реагируют на эту дополнительную теплотворную материю – оттого теплота плавления и называется «скрытой». Всё продумано! А, главное, опытом подтверждается: куда, мол, уходит запас тепла воды при 70оС, если не на плавление льда?! Так и нашли численное значение его скрытой теплоты плавления. Академики плакали от радости – закрывая глаза на то, что логика Блэка и Вильке работает при непременном предварительном допущении: количество теплоты в природе сохраняется. При этом бредовом допущении, результаты Блэка и Вильке, действительно, подтверждали наличие теплотворной материи. Всё понеслось по новой. Впрочем, старания Ломоносова не пропали даром: теперича теплотворной материи приписали такое специфическое свойство, как отсутствие веса – иначе, в самом деле, смешно получалось. И вышел у них, вместо теплотворной материи, невесомый теплотворный флюид, для которого подобрали меткое название: теплород. И стало у них всё краше прежнего.
Мы почему об этом – так подробно? Потому что полезно знать, как в физике появилась эта дичь про скрытые теплоты агрегатных превращений – которая до сих пор считается научной истиной. Придётся сказать пару слов про «научность» этой «истины».
Представьте: во внутреннем стаканчике калориметра находятся вода и лёд – в тепловом равновесии друг с другом и с буферным веществом. Ничтожное повышение температуры, до т.н. точки ликвидуса – и