5.8.3. Паде-аппроксимация аналитических функций

Для аппроксимации аналитических функций одной из лучших является Паде-аппроксимация, при которой заданная функция приближается отношением двух полиномов. Эта аппроксимация способна приблизить даже точки разрыва исходной функции с устремлениями ее значений в бесконечность (при нулях полинома знаменателя. Для осуществления такой аппроксимации используется функция pade:

pade(f, х=а, [m,n])

pade(f, х, [m,n])

Здесь f — аналитическое выражение или функция, x — переменная, относительно которой записывается аппроксимирующая функция, a — координата точки, относительно которой выполняется аппроксимация, m, n — максимальные степени полиномов числителя и знаменателя. Технику аппроксимации Паде непрерывной функции поясняет рис. 5.17.

Рис. 5.17. Аппроксимация Паде для синусоидальной функции

На рис. 5.17 представлена аппроксимация синусоидальной функции, а также построены графики этой функции и аппроксимирующей функции. Под ними дан также график абсолютной погрешности для этого вида аппроксимации. Нетрудно заметить, что уже в интервале [-π, π] погрешность резко возрастает на концах интервала аппроксимации.

Важным достоинством Паде-аппроксимации является возможность довольно точного приближения разрывных функций. Это связано с тем, что нули знаменателя у аппроксимирующего выражения способны приближать разрывы функций, если на заданном интервале аппроксимации число разрывов конечно. На рис. 5.18 представлен пример Паде-аппроксимации функции tan(x) в интервале от -4,5 до 4,5, включающем два разрыва функции.

Рис. 5.18. Аппроксимация Паде для разрывной функции тангенса

Как видно из рис. 5.18, расхождение между функцией тангенса и ее аппроксимирующей функцией едва заметны лишь на краях интервала аппроксимации. Оба разрыва прекрасно приближаются аппроксимирующей функцией и никакого выброса погрешности в точках разрыва нет. Такой характер аппроксимации подтверждается и графиком погрешности, которая лишь на концах интервала аппроксимации [-4.0, 4.0] достигает значений 0,01 (около 1%).

5.8.4. Паде-аппроксимация с полиномами Чебышева

Для многих аналитических зависимостей хорошие результаты дает аппроксимация полиномами Чебышева. При ней более оптимальным является выбор узлов аппроксимации, что ведет к уменьшению погрешности аппроксимации.

В общем случае применяется Паде-аппроксимация, характерная представлением аппроксимирующей функции в виде отношения полиномов Чебышева. Она реализуется функциями chebpade:

chebpade(f, x=a..b, [m,n])

chebpade(f, x, [m,n])

chebpade(f, a..b, [m,n])

Здесь a..b задает отрезок аппроксимации, m и n — максимальные степени числителя и знаменателя полиномов Чебышева. Приведенный ниже пример показывает аппроксимацию Паде полиномами Чебышева для функции f=cos(x):

> Digits:=10:chebpade(cos(x),x=0..1,5);

0.8235847380 T(0, 2x-1) - 0.2322993716 T(1, 2 x-1) - 0.05371511462 T(2, 2x-1) + 0.002458235267 T(3, 2 х-1) + 0.0002821190574 T(4, 2x-1) - 0.7722229156-5 T(5, 2x-1)

> chebpade(cos(x),x=0..1,[2,3]);

(0.8162435876 T(0, 2x-1) - 0.1852356296 T(1, 2x-1) - 0.05170917481 T(2, 2x-1))/(T(0, 2x-1) + 0.06067214549 T(1, 2x-1) + 0.01097466398 T(2, 2x-1) + 0.0005311640964 T(3, 2 x-1))

5.8.5. Наилучшая минимаксная аппроксимация

Минимаксная аппроксимация отличается от Паде-аппроксимации минимизацией максимальной абсолютной погрешности во всем интервале аппроксимации. Она использует алгоритм Ремеза (см. ниже) и реализуется следующей функцией:

minimax(f, x=a..b, [m,n], w, 'maxerror')

minimax(f, a..b, [m,n], w, 'maxerror')

Здесь, помимо уже отмеченных параметров, w — процедура или выражение, maxerror — переменная, которой приписывается значение minimax-нормы. Ниже дан пример аппроксимации функции cos(x) в интервале [-3, 3]:

> minimax(cos(х),х=-3..3,[2,3],1,'minmax');

> minimax;

.04621605601

5.8.6. Наилучшая минимаксная аппроксимация по алгоритму Ремеза

Для получения наилучшей полиномиальной аппроксимации используется алгоритм Ремеза, который реализует следующая функция:

remez(w, f, a, b, m, n, crit, 'maxerror')

Здесь w — процедура, представляющая функцию w(x) > 0 в интервале [a, b], f — процедура, представляющая аппроксимируемую функцию f(х), а и b — числа, задающие интервал аппроксимации [a, b], m и n — степени числителя и знаменателя аппроксимирующей функции, crit — массив, индексированный от 1 до m + n + 2 и представляющий набор оценок в критических точках (то есть точек максимума/минимума кривых погрешности), maxerror — имя переменной, которой присваивается минимаксная норма w abs(f-r).

Следующий пример иллюстрирует применение данной функции для аппроксимации функции erf (x):

> Digits:=12:w:=proc(х) 1.0 end;

w:= proc(x) 1.0 end proc

> f:=proc(x) evalf(erf(x)) end;

f: = proc(x) evalf (erf (x)) end proc

> crit:=array(1..7, [0, .1,.25,.5,.75,.9,1.]);

crit := [0, .1, .25, .5, .75, .9, 1.]

> remez(w,f,0,1,5,0,crit,'maxerror');

x→0.0000221268863 + (1.12678937620 + (0.018447321509 + (-0.453446232421 + (0.141246775527 + 0.00966355213050 x) x) x) x) x

> maxerror;

0.0000221268894463
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату