функцию. Интересно, что амплитуда колебаний в общем случае отлична от 1 и зависит от значения у(0) — при у(0)=0 она равна 1 (в нашем случае синусоида начинается со значение у(0)=-1). Подобным осциллятором может быть LC-контур или механический маятник без потерь.
Рис. 7.6. Решение дифференциального уравнения идеального осциллятора
7.2.4. Дополнительные примеры решения дифференциальных уравнений второго порядка
Ниже представлено решение еще двух дифференциальных уравнений второго порядка в аналитическом виде (de2a):
> restart: dsolve(diff(y(x),x$2)-diff(y(x),x)=sin(x),y(x));
> de:=m*diff(y(x),x$2)-k*diff(y(x),x);
> yx0:=y(0)=0,y(1)=1;
> dsolve({de,yx0},y(x));
Ряд примеров на применение дифференциальных уравнений второго порядка при решении практических математических и физических задач вы найдете в главе 11.
7.2.5. Решение систем дифференциальных уравнений
Функция dsolve позволяет также решать системы дифференциальных уравнений. Для этого она записывается в виде
dsolve(ODE_sys, optional_1, optional_2,...)
Здесь ODE_sys — список дифференциальных уравнений, образующих систему, остальные параметры опциональные и задаются по мере необходимости. Они могут задавать начальные условия, явно представлять искомые зависимости, выбирать метод решения и т.д. Детали задания опциональных параметров можно найти в справке.
На рис. 7.7 представлено решение системы из двух дифференциальных уравнений различными методами — в явном виде, в виде разложения в ряд и с использованием преобразования Лапласа. Здесь следует отметить, что решение в виде ряда является приближенным. Поэтому полученные в данном случае аналитические выражения отличаются от явного решения и решения с применением преобразования Лапласа.
Рис. 7.7. Решение системы из двух дифференциальных уравнений различными методами
Следует отметить, что, несмотря на обширные возможности Maple в области аналитического решения дифференциальных уравнений, оно возможно далеко не всегда. Поэтому, если не удается получить такое решение, полезно попытаться найти решение в численном виде. Практически полезные примеры решения дифференциальных уравнений, в том числе с постоянными граничными условиями, вы найдете в Главе 11.
7.2.6. Модель Стритера-Фелпса для динамики кислорода в воде
В качестве еще одного примера решении системы из двух дифференциальных уравнений рассмотрим модель Стритера-Фелпса, предложенную для описания динамики содержания растворенного в воде кислорода. Описание этой модели можно найти в [41]. Ниже представлено задание этой модели в виде системы из двух дифференциальных уравнений и их аналитическое решение (файл demp):
> sys := diff(x1(t),t) = K1*(C-x1(t))-K2*x2(t), diff(x2(t),t) = -K2*x2(t);
> dsol := dsolve({sys,x1(0) =a, x2(0)=b),{x1(t),x2(t)});
Здесь: x1(t) — концентрация в воде растворенного кислорода в момент времени t; x2(t) — концентрация биохимического потребления кислорода (БПК), С — концентрация насыщения воды кислородом, K1 — постоянная скорости аэрации, K2 — постоянная скорости уменьшения (БПК), a — начальное значение x1(t) и b — начальное значение х2(t) при t=0.
В данном случае получены два варианта аналитического решения — основное и упрощенное с помощью функции simplify. Читатель может самостоятельно построить графики зависимостей x1(t) и x2 (t).
7.3. Специальные средства решения дифференциальных уравнений
7.3.1. Численное решение дифференциальных уравнений
К сожалению, аналитического решения в общем случае нелинейные дифференциальные уравнения не имеют. Поэтому их приходится решать численными методами. Они удобны и в том случае, когда решение надо представить числами или, к примеру, построить график решения. Поясним принципы численного решения.
Для этого вернемся к дифференциальному уравнению (7.1). Заменим приращение
Если, к примеру, известно начальное значение у=у0, то новое значение у будет равно
Распространяя этот подход на последующие шаги решения получим
Эта формула известна как формула простого
Существует множество более совершенных методов решения дифференциальных уравнений, например, усовершенствованный метод Эйлера, метод трапеций, метод Рунге-Кутта, метод Рунге-Кутта- Фельберга и др. Ряд таких методов реализован в системе Maple и может использоваться при численном