Дифференциальное уравнение вида

где v — неотрицательная константа, называется уравнением Бесселя, а его решения известны как функция Бесселя. J(z) и J_(z) формируют фундаментальное множество решений уравнения Бесселя для неотрицательных значений (так называемые функции Бесселя первого рода):

где для гамма-функции используется следующее представление:

Второе решение уравнения Бесселя, линейно независимое от J(z), определяется как

и задает функции Бесселя второго рода Y(z).

Функции Бесселя третьего рода (функции Ханкеля) и функция Бесселя связаны следующим выражением:

H(1)v (z) = Jv (z) + iYv (z),

H(2)v (z) = Jv (z) - iYv (z).

Дифференциальное уравнение вида

где v — неотрицательная константа — называется модифицированным уравнением Бесселя, и его решения известны как модифицированные функции Бесселя I(z) и I_(z). K(z) — второе решение модифицированного уравнения Бесселя, линейно независимое от I (z). I(z) и K(z) определяются как:

и

Бета-функция определяется как:

где Г(z) — гамма-функция. Неполная бета-функция определяется интегральным выражением:

Эллиптические функции Якоби определяются интегралом:

В некоторых случаях при определении эллиптических функций используются модули k вместо параметра m. Они связаны выражением:

k² = m = sin² α.

Полные эллиптические интегралы первого и второго рода определяются следующим образом:

Функция ошибки (интеграл вероятности) определяется следующим образом:

erf(X) — возвращает значение функции ошибки для каждого элемента вещественного массива X.

Остаточная функция ошибки задается соотношением:

Встречается и масштабированная остаточная функция ошибки. Эта функция определяется так:

eifcx(x) = е erfc(x)

Интегральная показательная функция определяется следующим образом:

Гамма-функция определяется выражением:

Неполная гамма-функция определяется как:

Перейдем к функциям, представляющим ортогональные полиномы. Функция Лежандра определяется следующим образом:

где Рn(х) — полином Лежандра степени n, определяется так:

3.3.2. Специальные математические функции системы Maple 9.5

Maple 9.5 имеет практически полный набор специальных математических функций:

• AiryAi (Bi) — функции Эйри;

• AngerJ — функция Ангера;

• bernoulli — числа и полиномы Бернулли;

• Bessell (J, K, Y) — функции Бесселя разного рода;

• Beta — бета-функция;

• binomial — биноминальные коэффициенты;

• Chi — интегральный гиперболический косинус;

• Сi — интегральный косинус;

• csgn — комплексная сигнум-функция;

• dilog — дилогарифм;

• Dirac — дельта-функция Дирака;

• Ei — экспоненциальный интеграл;

• EllipticCE (CK, CPi, Е, F, K, Modulus, Nome, Pi) — эллиптические интегралы;

• erf — функция ошибок;

• erfc — дополнительная функция ошибок;

• euler — числа и полиномы Эйлера;

• FresneIC (f, g, S) — интегралы Френеля;

• GAMMA — гамма-функция;

• GaussAGM — арифметико-геометрическое среднее Гаусса;

• HankelH1 (Н2) — функции Ганкеля;

• harmonic — частичная сумма серии гармоник;

• Heaviside — функция Хевисайда;

• JacobiAM (CN, CD, CS, DN, DC, DS, NC, ND, NS, SC, SD, SN) — эллиптические функции Якоби;

• JacobiTheta1 (2, 3, 4) — дзета-функции Якоби;

• JacobiZeta — зет-функция Якоби;

• KelvinBer (Bei, Her, Hei, Ker, Kei) — функции Кельвина;

• Li — логарифмический интеграл;

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату