52. Первый вопрос
Алиса допустила ошибку, записав одиннадцать тысяч одиннадцать сотен и одиннадцать как 11 111 — а это неверно! 11 111 — это одиннадцать тысяч
11000
1100
11
-------
12 111
Итак, одиннадцать тысяч одиннадцать сотен и одиннадцать — это 12 111, число, которое делится на три без остатка.
53. И снова вопрос на деление
Миллион,
54. Сколько стоит бутылка?
Часто на этот вопрос дают неправильный ответ: 4 шиллинга. Если бы бутылка действительно стоила 4 шиллинга, тогда вино, которое на 26 шиллингов дороже бутылки, стоило бы 30 шиллингов. В этом случае вино и бутылка в сумме стоили бы 34 шиллинга.
Правильный ответ — бутылка стоит 2 шиллинга, а вино стоит 28 шиллингов.
55. Во сне или наяву?
Если бы Черный Король в это время бодрствовал, он не мог бы иметь ложное представление о том, что оба они с Королевой спят. Следовательно, он в это время спал. Но поскольку все, что он думает во сне, неверно, значит, и его представление о том, что оба они с Королевой спали, было ошибочным. Раз так, то Черная Королева в это время не спала.
56. Во сне или наяву — 2
Черный Король либо бодрствовал, либо спал в это время. Предположим, он бодрствовал. Тогда его суждение было верным и это значит, что Черная Королева спала. Раз она спала, то ее суждение было ошибочным, следовательно, она должна была полагать, что Король спит. Предположим теперь, что Король в это время спал. Тогда его суждение было ошибочным, а значит, Королева бодрствовала. Раз она бодрствовала, то все ее суждения были верными, в том числе и о том, что Король спит. Итак, мы видим, что независимо от того, спал ли Король в это время или бодрствовал, Королева полагала, что он спит.
57. Задача о погремушках
Если Траляля проиграет пари, у него останется ровно половина от общего числа погремушек (т.е. столько же погре-
мушек, сколько у Труляля, как сформулировано в условиях задачи). Значит, сейчас у него на одну погремушку больше, чем половина от всех погремушек. Если же Траляля выиграет пари, то у него будет на две погремушки больше, чем половина от всех погремушек. Кроме того, в этом случае у него окажется 2/3 от общего числа погремушек (или вдвое больше погремушек, чем у Труляля, как сформулировано в условиях задачи), что на 1/6 от общего числа погремушек больше, чем половина от общего числа погремушек (поскольку 1/2—1/3 = 1/6). Следовательно, «на 1/6 от общего числа погремушек больше, чем половина от общего числа погремушек» — это то же самое, что «на две погремушки больше, чем половина от всех погремушек», поэтому две погремушки и есть 1/6 от общего числа погремушек. Следовательно, всего у братьев 12 погремушек, из которых у Траляля 7 погремушек, а у Труляля — 5.
Давайте проверим: если Траляля проиграет пари, у каждого из братьев окажется по 6 погремушек. Если же Траляля выиграет, то у него будет 8, а у его братца только 4 погремушки, то есть у Траляля будет в два раза больше погремушек, чем у Труляля.
58. Братья и сестры
В семье четыре мальчика и три девочки. У Тони три брата и три сестры, у Алисы четыре брата и две сестры.
59. Кому письмо?
Если Королева три письма разложила правильно, то как раз остается одно письмо. Поэтому нам нужно сделать выбор между двумя вариантами: либо она три письма разложила правильно, либо только два. Но ведь если она три письма разложила правильно, значит, и четвертое письмо должно было попасть в предназначенный для него конверт! Следовательно, Королева разложила правильно два письма.
60. Сколько земли у фермера?
Часто на этот вопрос дают неправильный ответ — 11 акров. Если бы у фермера и в самом деле было 11 акров земли, сборщик налогов отобрал бы у него 1 1/10 акров (то есть 1/10 от 11 акров). В этом случае у фермера осталось бы 9 9/10 акров, а вовсе не 10. Поэтому 11 акров не может быть правильным ответом.
Как же найти правильный ответ? Давайте подойдем к решению задачи следующим образом: после того как у фермера отобрали 1/10 надела, у него осталось 9/10. Следовательно, 9/10 от первоначального надела и есть 10 акров. Это означает, что если мы умножим число акров в первоначальном наделе на 9/10, мы получим тот надел, который остался после конфискации части земли — то есть 10 акров. Следовательно, чтобы «вернуться« от оставшегося надела к первоначальному, мы должны поделить на 9/10! Чтобы поделить на 9/10, нужно умножить на 10/9, поэтому мы умножаем 10 на 10/9 и получаем 100/9, или 11 1/9 акров.
Можно ли проверить этот результат? Давайте посмотрим: площадь первоначального надела составляла 11 1/9 акров. 1/10 от 11 1/9 — это 1 1/9, и если мы отнимем 1 1/9 от 11 1/9, мы получим ровно 10 акров.
61. Еще один фермер
Эту задачу можно решить, приведя все дроби к общему знаменателю (равному 60): 1/3 + 1/4 + 1/5 = 20/60 + 15/60 + 12/60 = 47/60. На возделывание кукурузы таким образом остается 13/60 всей площади участка. Следовательно, 13/60 и составляют 26 акров, и раз 13 это половина от 26, то 60 должно быть половиной от общей площади в акрах. Значит, общая площадь участка составляет 120 акров.
Давайте проверим: 1/3 от 120 акров это 40 акров, на которых фермер выращивал кабачки. 1/4 от 120 это 30 акров, на которых произрастал горох, и 1/5 от 120 это 24 акров, на которых росли бобы. Произведем сложение: 40 + 30 + 24 = 94. 120 — 94 = 26 акров, отведенных под кукурузу.
62. Когда часы двенадцать бьют
Между первым и шестым ударами пять временных интервалов, и эти пять интервалов помещаются в 30 секунд. Значит интервал между любым двумя следующими друг за другом ударами составляет шесть секунд (а не пять, как ошибочно полагают некоторые!). Далее, между первым и двенадцатым ударами — одиннадцать интервалов времени. Следовательно, двенадцать ударов дедушкины часы отбивают за 66 секунд.
63. Двенадцатый вопрос
Предположим, Алиса ответила бы «да». В этом случае Королева могла бы поступить, как ей заблагорассудится: либо
засчитать, либо не засчитать экзамен. Если бы она посчитала, что Алиса не сдала экзамен, и Алиса спросила бы, почему, Королева могла бы объяснить ей следующее:
— Ты дала неправильный ответ на последний вопрос — ты ведь сказала, что сдашь экзамен, а ты его не сдала. Раз ты ответила неправильно на этот вопрос, ты провалила весь экзамен!
С другой стороны, с тем же успехом Королева могла бы засчитать Алисе экзамен, обосновав свое решение следующим образом:
— Ты предсказала, что сдашь экзамен, и раз ты его сдала, ты предсказала правильно. Значит, на последний вопрос ты ответила верно, и поэтому успешно сдала экзамен.
Разумеется, в обоих случаях ход рассуждений представляет собой замкнутый круг, но согласитесь, что