Сделать позвонки отличными друг от друга – всего лишь один из примеров проблемы, которую зародышу приходится решать постоянно и которая связана с дифференциацией частей по оси голова-хвост. Эмбрион должен решать эту задачу в отношении нервной трубки, поначалу единообразной, но впоследствии с образующимся на одном конце головным мозгом. Он должен решать ее для костей головы, так чтобы верхняя челюсть формировалась рядом с нижней и к каждой из них прикреплялись бы соответствующие нервы и мышцы. Он должен решать эту проблему и для кишечной трубки, из которой сформируются желудок, печень, поджелудочная железа и кишечник, а также брюшной кровяной сосуд, впоследствии образующий четыре камеры сердца. С такими вот задачами приходится справляться генному калькулятору.
Как он работает у млекопитающих, известно из экспериментов на мышах с делециями одного или более Hox-генов. Эти мыши часто имеют глубокие нарушения. У одних передние конечности странно близко придвинуты к голове, у других отсутствуют части ромбовидного мозга или черепно-мозговые нервы. У некоторых такие грыжи, что кишечник вытесняется в грудную полость или у них не зарастает нервная трубка. У кого-то отсутствует вилочковая, щитовидная и паращитовидные железы, а сердце и лицевая часть головы несут множество аномалий. Некоторые ходят на пальчиках, а не на подошвах стоп, при этом их задние конечности подвержены непроизвольным конвульсиям. Большая часть мышей с делецией хотя бы одного Hox-гена умирает в молодом возрасте.[80]
Полагают, что генный калькулятор подобным же образом работает и у людей. Доказательством тому, хотя и косвенным, служит единственное исследование 1997 года, в котором группа лондонских ученых изучала шесть зародышей, абортированных с помощью пилюли PY-486, 'наутро после пилюли'. Зародышам было по четыре недели, в длину они достигали 5 миллиметров и все были результатом нежелательной беременности. Ученые пометили их молекулярными датчиками, чтобы обнаружить время и место экспрессии гомеозисных генов. На авторадиограммах окрашенных срезов эмбрионов активность Hox-генов выявлялась в виде зернистых штрихов и белых пятен на темном фоне зарождающихся структур ромбовидного мозга и жаберных дуг. Характер активности Hox-генов был в точности таким, каким его следовало ожидать исходя из опытов на мышах.
Иметь такие результаты важно и приятно. Но это исследование никогда не было повторено. Изучение человеческих эмбрионов – большая редкость. В Соединенном Королевстве подобные изыскания можно проводить, только если преодолены все устрашающие организационные преграды. В Соединенных Штатах их выполнение и вовсе запрещено, по крайней мере для учреждений, финансируемых из федерального бюджета. Авторадиограммы, являющиеся исходным материалом для таких исследований, обладают одним свойством, вызывающим беспокойство. Возможно, это связано с тем, что качество, которое обнаруживается у эмбрионов после смерти, – генная активность, на самом деле является принадлежностью живых существ.[81]
Три тысячи переключений
Говоря о 'калькуляторе судьбы', я подчеркивал роль тридцати девяти Hox-генов. Но человеческий геном кодирует три тысячи других факторов транскрипции. Подобно сигнальным молекулам, на которые они реагируют, транскрипционные факторы образуют семьи, одну из которых и представляют гомеобоксные гены. Транскрипционные факторы являются компонентами сетей, если хотите – переключателями, которые мобилизуются, когда клетки калькулируют свою будущую судьбу. Этот вычислительный процесс носит поступательный характер, так что первые зародышевые клетки, еще не обученные, но с уймой открывающихся перед ними возможностей, испытывают, пожалуй, наиболее жесткий прессинг относительно того, кем именно они станут.
Некоторые из вычислительных уравнений, например, те, которые работают применительно к позвонкам, в общем, понятны; другие мы только сейчас начинаем узнавать. В 1904 году один тирольский трактирщик зарезал курицу, которая вместе с другими бродила по двору, и обнаружил у нее ни много ни мало как семь сердец. Курьез? Возможно. Однако в 2001 году было установлено, что при удалении у мышей гена под названием ?-катенин у эмбриона возникает цепочка дополнительных сердец, каждое из которых бьется и перекачивает кровь. Добавочные сердца образованы из ткани, которая обычно предназначена для кишечника.Так выявляется небольшой кусочек другого уравнения, при решении которого необученные зародышевые клетки становятся эндодермой или мезодермой.[82] Другие нарушения свидетельствуют о наличии уравнений, о которых нам вообще ничего не известно. Например, в глазном веке существует ряд скрытых железок (мейбомиевы железы), которые иногда, хотя и редко, трансформируются в волосяные фолликулы. Дети, у которых утрачены мейбомиевы железы, имеют вместо них два или даже три ряда ресниц на каждом веке. Эта черта передается по наследству, но ген, отвечающий за превращение эпидермиса века в железу, а не в волосяной фолликул, пока что не найден (и кажется сомнительным, чтобы кто-то его искал).[83]
И наконец, существует дезорганизация. Мутантные мыши с донельзя кошмарными и невероятно странными характеристиками стали объектом всего лишь трех научных работ. Три особенности делают дезорганизацию странной. Первая – это масштаб распространения дефектов у мышей, которые ею страдают. Неоправданной жестокостью было бы описание всех деталей внешности этих мышей-мутантов: достаточно сказать, что уродств одного помета хватило бы для заполнения просторного тератологического музея. Тем не менее мутация вовсе не обязательно летальна. Второе странное свойство дезорганизации состоит в том, что двух мышей-мутантов с одинаковым набором дефектов не существует. У некоторых выявляются совершенно ничтожные поражения, и они могут жить и размножаться, другие рождаются изуродованными, но живыми, третьи умирают во чреве. Подобные вариации встречаются даже у одной мыши: левая почка (либо легкое, либо нога) может быть полностью разрушена, а правый аналогичный орган остается по существу нетронутым. И последнее: у мышей-мутантов обнаруживается странная склонность генерировать добавочные части тела – не только конечности (которые могут появляться на теле практически в любом месте), но также дополнительные внутренние органы, такие как печень, селезенка и кишечник. В мышцах и коже мышей имеются, кроме того, странные опухолеобразные структуры, напоминающие остатки лишних органов, которые почему-то не смогли до конца развиться. Существует ли у человека ген дезорганизации? Неизвестно ни одной человеческой семьи со свойствами, похожими на проявления дезорганизации. Однако некоторые медицинские генетики говорят о детях с совершенно непонятным набором врожденных аномалий как возможных носителях передающейся по женской линии мутации. Один такой ребенок – мальчик, родившийся в 1989 году, имел девять пальцев на одной ноге и опухолеобразные разрастания тканей, разбросанные по всему телу. У него имелся также вполне сформированный палец с ногтем, который рос с правой стороны грудной клетки. Ген дезорганизации пока что не найден, но можно быть уверенным, что это вскоре случится. А до того слово имеют мыши. Они рассказывают о некоем важнейшем, глобальном и абсолютно неизвестном компоненте калькулятора судьбы эмбриона, который полностью вышел из строя.[84]
Mutatis mutandis[85]
Власть гомеозисных генов над количеством и типом частей тела позволила некоторым ученым предположить, что они должны были играть важную роль в эволюции; что они каким-то образом определяли потрясающее разнообразие форм у животных – от червей до китов. В этом наверняка что-то есть. Люди с дополнительными ребрами, в особенности те, у кого эти ребра расположены там, где должна быть шея, несколько напоминают, к примеру, змей. У змей шеи вообще нет: у них есть позвонки, несущие ребра вдоль всего тела, до самой головы. Это происходит потому, что характер активности Hox-генов в