‘Соединения

‘Левый сервомотор Pin RB1

‘Правый сервомотор Pin RB2

‘Сервомотор наклона Pin RB0

‘Движение только вперед

start:

for B0 = 1 to 60

pulsout 0, 155 ‘Наклон по часовой стрелке, подъем правой стороны

pulsout 1, 145 ‘Левые ноги на месте

pulsout 2, 145 ‘Правые ноги движутся вперед

pause 18

next B0

for B0 = 1 to 60

pulsout 0, 190 ‘Наклон против часовой стрелки, подъем левой стороны

pulsout 1, 200 ‘Левые ноги движутся вперед

pulsout 2, 145 ‘Правые ноги сохраняют положение вперед

pause 18

next B0

for B0 = 1 to 15

pulsout 0, 172 ‘Среднее положение, отсутствие наклона

pulsout 1, 200 ‘Левые ноги сохраняют положение вперед

pulsout 2,145 ‘Правые ноги сохраняют положение вперед

pause 18

next B0

for B0 = 1 to 60

pulsout 0, 172 ‘Среднее положение, отсутствие наклона

pulsout 1, 145 ‘Движение левых ног назад

pulsout 2, 200 ‘Движение правых ног назад

pause 18

next B0

goto start

На команду pulsout не все сервомоторы реагируют одинаковым образом. Возможно, что для создания робота вы приобретете сервомоторы, характеристики которых будут слегка отличаться от тех, которые были использованы мной. В этом случае обратите внимание на то, что параметры команды pulsout, которая определяет положение ротора сервомотора, должны быть подстроены. В этом случае необходимо подобрать численные значения параметров pulsout, которые бы соответствовали тому типу сервомотора, который использован в вашей конструкции шестиногого робота.

Данная программа на PICBASIC позволяет роботу двигаться только в прямом направлении, однако, немного изменив программу, конструктор может заставить робота двигаться назад и совершать повороты вправо и влево. Установка нескольких сенсорных датчиков может информировать робота о наличии препятствий.

Список деталей конструкции шагающего робота

• Сервомоторы

• Микроконтроллеры 16F84

• Алюминиевые полосы

• Алюминиевый лист

• Прутки и гайки с резьбой 3 мм

• Пластиковые винты, гайки и шайбы

Детали можно заказать в:

Images Company

39 Seneca Loop

Staten Island, NY 10314

(718) 698-8305

http://www.imagesco.com

Глава 12

Робот – солнечный шар

Идею создания подобного робота первоначально выдвинул Ричард Вейт из Северного Йорка, Торонто. Ричард построил робота, ищущего источник света, заключенного в прозрачную сферу (шар). Затем, в более недавнее время, Дейв Хранкиу из Калгари, Канада, так сказать, «поднял этот шар» и построил серию передвижных роботов – солнечных шаров, ищущих источники света.

Можно отметить два любопытных качества, которыми обладают подобные роботы (см. рис. 12.1). Первое из них – способ передвижения. Внутрь шара помещен редуктор. Один из концов вала редуктора наглухо прикреплен к внутренней стороне поверхности прозрачной сферы. Жесткое крепление вала редуктора препятствует его вращению, что вынуждает вращаться сам редуктор. Редуктор имеет достаточно большой вес, что перемещает центр тяжести сферы вперед. По этой причине сама сфера катится вперед.

Рис. 12.1 Робот – солнечный шар

В состоянии покоя центр тяжести редуктора находится в нижней мертвой точке (нижнее положение редуктора), и шар покоится, т. е. оказывает сопротивление качению. При включении редуктора он начинает вращаться внутри шара. Это вращение перемещает центр тяжести шара вперед, и шар, таким образом, катится в прямом направлении.

Второе качество относится к способу питания конструкции редуктора. Первоначально солнечные роботы имели бортовой источник питания, что позволяло подводить питание к редуктору в прерывистом режиме (более подробно это было изложено в гл. 3). Бортовой источник питания состоит из батареи солнечных элементов, основного конденсатора и триггерной или низкочастотной генерирующей схемы. При освещении световым потоком солнечная батарея начинает заряжать основной конденсатор. Когда значение напряжения на конденсаторе достигнет пороговой величины, триггерная схема пропускает накопленный заряд через двигатель с высоким КПД, соединенный с редуктором, что вызывает небольшое перемещение робота вперед.

В данной конструкции робота использована аналогичная конструкция редуктора, но для его питания использованы два элемента АА. Недостатком батарей является необходимость их замены после использования. Однако их преимущество в том, что питание на схему робота подается постоянно, что позволяет нам легко изучать его поведение (в основном фототропизм), движение и перемещения.

В оригинальной конструкции робота для изучения этих эффектов требовался метод замедленной съемки. В зависимости от уровня освещенности, каждая зарядка конденсатора занимает несколько минут. Когда заряд протекает через двигатель, робот чуть-чуть откатывается вперед. Например, 10 часов движения оригинальной модели солнечного робота сжимаются в несколько минут при изучении данной конструкции.

Данному роботу не требуется электронных схем управления бортовым источником питания, однако и ему необходим световой выключатель. Схема, изображенная на рис. 12.2, управляет подачей напряжения от батареи на двигатель редуктора. Схема определяет уровень освещенности, «видимой» роботом. Если уровень освещенности достаточно высок, то схема включает двигатель. Пороговое значение уровня освещенности может регулироваться с помощью переменного резистора V1.

Рис. 12.2. Принципиальная электрическая схема солнечного шара

Конструкция редуктора

Перед тем как мы приступим к изготовлению робота, давайте посмотрим на конструкцию редуктора (см. рис. 12.3). Физические размеры редуктора меньше обычных и его легче смонтировать внутри сферы. Передаточное число редуктора 1000:1. Чем больше передаточное число, тем медленнее будет двигаться робот.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату