добавления родового параметра класса, а, следовательно, изменит интерфейс класса, повлечет изменения у всех клиентов класса, что недопустимо.

Типовые переменные

Ряд авторов, среди которых Ким Брюс (Kim Bruce), Дэвид Шенг (David Shang) и Тони Саймонс (Tony Simons), предложили решение на основе типовых переменных (type variables), значениями которых являются типы. Их идея проста:

[x]. взамен ковариантных переопределений разрешить объявление типов, использующее типовые переменные;

[x]. расширить правила совместимости типов для управления такими переменными;

[x]. считать язык (в остальном) безвариантным;

[x]. обеспечить возможность присваивания типовым переменным в качестве значений типы языка.

Подробное изложение этих идей читатели могут найти в ряде статей по данной тематике, а также в публикациях Карделли (Cardelli), Кастаньи (Castagna), Вебера (Weber) и др. Начать изучение вопроса можно с источников, указанных в библиографических заметках к этой лекции. Мы же не будем заниматься этой проблемой, и вот почему.

[x]. Надлежаще реализованный механизм типовых переменных относится к категории, позволяющей использовать тип без полной его спецификации. Эта же категория включает универсальность и закрепление объявлений. Этот механизм мог бы заменить другие механизмы этой категории. Вначале это можно истолковать в пользу типовых переменных, но результат может оказаться плачевным, так как не ясно, сможет ли этот всеобъемлющий механизм справиться со всеми задачами с той легкостью и простотой, которая присуща универсальности и закреплению типов.

[x]. Предположим, что разработан механизм типовых переменных, способный преодолеть проблемы объединения ковариантности и полиморфизма (все еще игнорируя проблему скрытия потомком). Тогда от разработчика классов потребуется незаурядная интуиция для того, чтобы заранее решить, какие из компонентов будут доступны для переопределения типов в порожденных классах, а какие - нет. Ниже мы обсудим эту проблему, имеющую место в практике создания программ и, увы, ставящую под сомнение применимость многих теоретических схем.

Это заставляет нас вернуться к уже рассмотренным механизмам: ограниченной и неограниченной универсальности, закреплению типов и, конечно, наследованию.

Полагаясь на закрепление типов

Почти готовое решение проблемы ковариантности мы найдем, присмотревшись к известному нам механизму закрепленных объявлений.

При описании классов SKIER и SKIER1 вас не могло не посетить желание, воспользовавшись закрепленными объявлениями, избавиться от многих переопределений. Закрепление - это типичный ковариантный механизм. Вот как будет выглядеть наш пример (все изменения подчеркнуты):

class SKIER feature

roommate: like Current

share (other: like Current) is ... require ... do

roommate := other

end

...

end

class SKIER1 feature

accommodation: ROOM

accommodate (r: like accommodation) is ... require ... do

accommodation := r

end

end

Теперь потомки могут оставить класс SKIER без изменений, а в SKIER1 им понадобится переопределить только атрибут accommodation. Закрепленные сущности: атрибут roommate и аргументы подпрограмм share и accommodate - будут изменяться автоматически. Это значительно упрощает работу и подтверждает тот факт, что при отсутствии закрепления (или другого подобного механизма, например, типовых переменных) написать ОО- программный продукт с реалистичной типизацией невозможно.

Но удалось ли устранить нарушения корректности системы? Нет! Мы, как и раньше, можем перехитрить проверку типов, выполнив полиморфные присваивания, вызывающие нарушения системной корректности.

Правда, исходные варианты примеров будут отклонены. Пусть:

s: SKIER; b: BOY; g: GIRL

...

create b;create g;-- Создание объектов BOY и GIRL.

s := b; -- Полиморфное присваивание.

sl.share (g)

Аргумент g, передаваемый share, теперь неверен, так как здесь требуется объект типа like s, а класс GIRL не совместим с этим типом, поскольку по правилу закрепленных типов ни один тип не совместим с like s, кроме него самого.

Впрочем, радоваться нам не долго. В другую сторону это правило говорит о том, что like s совместим с типом s. А значит, используя полиморфизм не только объекта s, но и параметра g, мы можем снова обойти систему проверки типов:

s: SKIER; b: BOY; g: like s; actual_g: GIRL;

...

create b; create actual_g -- Создание объектов BOY и GIRL.

s := actual_g; g := s -- Через s присоединить g к GIRL.

s := b -- Полиморфное присваивание.

s.share (g)

В результате незаконный вызов проходит.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату