В таком косом колодце всякое тело должно качаться, увлекаемое силою тяжести, вперед и назад, все время прижимаясь ко дну. Если в туннеле устроить рельсы, то железнодорожный вагон будет сам катиться по ним: вес заменит тягу паровоза. Вначале поезд будет двигаться очень медленно. С каждой секундой скорость самокатного поезда будет возрастать; вскоре она дойдет до невообразимой величины, так что воздух в туннеле будет уже заметно мешать его движению. Но забудем на время об этом досадном препятствии, мешающем осуществлению многих заманчивых проектов, и проследим за поездом дальше. Домчавшись до середины туннеля, поезд будет обладать такой огромной скоростью, — во много раз быстрее пушечного снаряда! — что с разбега докатится почти до противоположного конца туннеля. Если бы не трение, не было бы и этого «почти»: поезд без паровоза сам доехал бы из Ленинграда в Москву. Продолжительность перелета в один конец, как показывает расчет, — та же, что и для падения сквозь туннель, прорытый по диаметру: 42 минуты 12 секунд. Странным образом она не зависит от длины туннеля; путешествия в туннеле Москва — Ленинград, Москва — Владивосток или Москва — Мельбурн продолжались бы одинаковое время[25].

То же повторялось бы с любым другим экипажем: дрезиной, каретой, автомобилем и т. д. Поистине сказочная дорога, которая, сама оставаясь неподвижной, мчит по себе все экипажи от одного конца до другого, и притом с невообразимой быстротой!

(Интересующиеся математической стороной этой задачи могут найти подробный разбор ее в моей статье, напечатанной в журнале «Математика и физика в школе», 1936, № 3, стр. 106–107.)

Как роют туннели?

Взгляните на рис. 47, изображающий три способа проведения туннелей, и скажите, какой из них прорыт горизонтально?

Рисунок 47. Три способа прокладывать туннели сквозь горы.

Не верхний и не нижний, а средний, идущий по дуге, которая во всех точках образует прямые углы с направлением отвесных линий (или земных радиусов). Это и есть горизонтальный туннель, — его изгиб вполне соответствует кривизне земной поверхности.

Большие туннели прорывают обыкновенно так, как показано вверху: по прямым линиям, касательным к земной поверхности в крайних точках туннеля. Такой туннель сначала идет немного вверх, затем вниз. Он представляет то удобство, что вода не застаивается в нем, а сама стекает к краям.

Если бы туннель рылся строго горизонтально, то длинный туннель имел бы дугообразную форму. Вода не имела бы стремления вытекать из него, так как в каждой его точке находилась бы в равновесии. Когда такой туннель длиннее 15 км (Симплонский, например, имеет в длину 20 км), то, стоя у одного выхода, нельзя видеть другого: луч зрения упирается в потолок, так как средняя точка такого туннеля более чем на 4 м возвышается над его конечными точками.

Наконец, если прорыть туннель по прямой линии, соединяющей крайние точки, он будет с обоих концов иметь легкий наклон вниз к середине. Вода не только не будет вытекать из него, но, напротив, скопится в средней, самой низкой его части. Зато, стоя у одного конца такого туннеля, можно будет видеть другой. Прилагаемые рисунки поясняют сказанное[26].

Глава пятая

Путешествие в пушечном снаряде.

В заключение наших бесед о законах движения и силе притяжения разберем то фантастическое путешествие на Луну, которое так занимательно описано Жюлем Верном в романах «С Земли на Луну» и «Вокруг Луны[27]». Вы, конечно, помните, что члены Пушечного клуба Балтиморы, обреченные на бездеятельность с окончанием Североамериканской войны, решили отлить исполинскую пушку, зарядить ее огромным полым снарядом и, посадив внутрь пассажиров, выстрелом отправить снаряд-вагон на Луну.

Фантастична ли эта мысль? И прежде всего: можно ли сообщить телу такую скорость, чтобы оно безвозвратно покинуло земную поверхность?

Ньютонова гора

Предоставим слово гениальному Ньютону, открывшему закон всемирного тяготения. В своих «Математических началах физики» он пишет (приводим это место ради облегчения понимания в вольном переводе):

«Брошенный камень под действием тяжести отклоняется от прямолинейного пути и падает на Землю, описывая кривую линию. Если бросить камень с большею скоростью, то он полетит дальше; поэтому может случиться, что он опишет дугу в десять, сто, тысячу миль и, наконец, выйдет за пределы Земли и не вернется на нее больше. Пусть AFB (рис. 48) представляет поверхность Земли, C — ее центр, a UD, UE, UF, UG — кривые линии, которые описывает тело, бросаемое в горизонтальном направлении с очень высокой горы со все большей и большей скоростью. Мы не принимаем во внимание противодействия атмосферы, т. е. предполагаем, что она совершенно отсутствует. При меньшой первоначальной скорости тело описывает кривую UD, при большей скорости — кривую UE, при еще больших скоростях — кривые UF, UG. При некоторой скорости тело обойдет вокруг всей Земли и возвратится к вершине горы, с которой его бросили. Так как при возвращении к исходному пункту скорость тела будет не меньше, чем в самом начале, то тело будет продолжать двигаться и дальше по той же кривой».

Рисунок 48. Как должны падать камни, бросаемые на вершине горы с огромной скоростью в горизонтальном направлении.

Если бы на этой воображаемой горе была пушка, то выброшенный ею снаряд при известной скорости никогда не упал бы обратно на Землю, а стал бы безостановочно кружиться вокруг земного шара. Путем довольно простого расчета[28] нетрудно определить, что это должно наступить при скорости около 8 км в секунду. Другими словами, снаряд, выбрасываемый пушкой со скоростью восьми километров в секунду, навсегда покидает поверхность земного шара и становится спутником нашей планеты. Он будет мчаться в 17 раз быстрее, чем какая-либо точка на экваторе, и опишет полный оборот вокруг нашей планеты в 1 час 24 минуты. Если же сообщить снаряду большую скорость, он будет вращаться около Земли уже не по кругу, а по более или менее вытянутому эллипсу, удаляясь от Земли на огромное расстояние. При еще большей начальной скорости снаряд навсегда удалится от нашей планеты в мировое пространство. Это должно наступить при начальной скорости около 11 км в секунду. (Во всех этих рассуждениях имеются в виду снаряды, движущиеся в пустом пространстве, а не в воздушной среде.)

Теперь посмотрим, можно ли осуществить полет на Луну теми средствами, которые предлагал Жюль Верн. Современные пушки сообщают снарядам скорость не более двух километров в первую секунду. Это в пять раз меньше той скорости, с какой тело может полететь на Луну. Герои романа думали, что если они соорудят исполинскую пушку и зарядят ее огромным количеством взрывчатых веществ, им удастся получить скорость, достаточную, чтобы отправить снаряд на Луну.

Фантастическая пушка

И вот члены Пушечного клуба отливают гигантскую пушку, длиной в четверть километра, отвесно врытую в землю. Изготовляется соответственно огромный снаряд, который внутри представляет собою каюту для пассажиров. Вес его 8 тонн. Заряжают пушку хлопчатобумажным порохом — пироксилином — в количестве 160 тонн. В результате взрыва снаряд, если верить романисту, приобретает скорость в 16 км в секунду, но вследствие трения о воздух скорость эта уменьшается до 11 км в секунду. Таким образом, очутившись за пределами атмосферы, жюль-вернов снаряд обладает скоростью, достаточной, чтобы долететь до Луны.

Так описывается в романе. Что же может сказать об этом физика?

Проект Жюля Верна уязвим совсем не в том пункте, куда обычно направляется сомнение читателя. Во-первых, можно доказать (я доказываю это в книге «Межпланетные путешествия»), что пороховые пушки никогда не смогут сообщить снарядам скорости, большей 3 км в секунду.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату