Например, одна из аксиом гласит «элемент, непосредственно следующий за числом, есть также число». Мы ввели обозначение х' = sx, где s означает «непосредственно следующий за», так что s0 = 1, s1 = ss0 = 2, и так далее. Гёдель приписал число каждому элементарному знаку, используемому в выражениях. Предположим, что он приписал 5 знаку «=» и 7 знаку s. Каждая отдельная переменная, такая как x, описывается отдельным простым числом, большим 10. Например, мы припишем x число 11, а х' число 13. Гёделевским номером предложения является произведение всех чисел, соответствующих символам, которые содержит предложение; так, нашему предложению х' = sx приписывается значение 13 (для x') × 5 (для «=») × 7 (для s) × 11 (для x), что дает 5005. Заметим, что посредством этой процедуры каждое предложение, включая аксиомы формализма, наделяется единственным номером[52], поэтому связи между предложениями становятся связями внутри арифметики. Например, мы можем ответить на метаматематический вопрос: встречается ли это предложение в более длинном, более сложном предложении, выяснив, является ли 5005 множителем в гёделевском номере сложного предложения, также как 5 является множителем 75.

Снабдим предложения индексами, используя их гёделевские номера, так что предложение х' = sx относительно числа 6 (которое должно читаться 6 = s5, «6 непосредственно следует за 5») есть предложение p5005(6). Вы можете ожидать, что сложные предложения имеют большие гёделевские номера, но в том, что последует ниже, мы будем делать вид, что можем обойтись малыми номерами, такими как p1(6) и p4 (6). Например, мы можем сделать вид, что Предложение 4, примененное к числу 6, является метаматематическим утверждением «6 есть совершенное число» (число, являющееся суммой своих простых множителей, в данном случае включая 1, 6 = 1 + 2 + 3 и 6 = 1 × 2 × 3), а Предложение 5 может сообщать о простых числах, и мы можем прочесть p5(11) как «11 есть простое число».

Математическое доказательство состоит из строки предложений, которые выводятся одно из другого с помощью использования правил обращения с символами. Это означает, что мы можем приписать отдельный номер целому доказательству, отметив гёделевские номера всех входящих в него предложений. Если доказательство состоит из трех предложений с гёделевскими номерами 6, 8 и 2 (на практике эти номера были бы огромны), то всему доказательству приписывается номер 26 × 38 × 52 = 10 497 600 (для более длинных доказательств ряд простых чисел 2, 3, 5 последовательно продолжают). Как вы можете вообразить, длинные доказательства, состоящие из сложных предложений, имеют астрономически большие гёделевские номера. И снова смыслом этой процедуры является то, что целые доказательства включаются в область арифметики. Мы можем использовать арифметические процедуры, чтобы, например, судить, используется ли одно доказательство в другом, определяя, входит ли гёделевский номер первого множителем в гёделевский номер второго, подобно тому, как 15 = 5 × 3 означает, что 5 и 3 являются компонентами 15.

Теперь мы воспользуемся этими гёделевскими номерами, чтобы вывести результат Гёделя с помощью вариации процедуры из метода Кантора и решения Тьюрингом проблемы вычислимости. На самом деле Гёдель использовал гораздо более глубокие методы, доказав пятьдесят промежуточных теорем — опорные базы, — прежде чем достичь завершения доказательства. Следующий далее текст лишь ухватывает суть дела: представьте себе это как полет вертолета над вершиной горы. Однако, поскольку доказательство все же является трудным, даже урезанное и упрощенное до той степени, до которой мне удалось его адаптировать, вы можете свободно перескочить к месту, где восстанавливается нормальный размер шрифта.

Предположим, что у нас есть некоторое предложение относительно числа 0, мы назовем это предложение p0(0), и такое же предложение относительно числа 1, которое мы назовем p0(1), и так далее. Обозначим вообще это предложение относительно числа x как p0(x). Эти предложения могут быть истинными, а могут ложными. Например, предложение «квадратный корень из x равен 1» в случае p0(0) ложно, поскольку утверждает, что √0 = 1, что неверно, но в случае p0(1) оно истинно, так как √1 = 1. Каждое из этих предложений имеет гёделевский номер, который мы можем вычислить, и существует бесконечное число таких предложений относительно каждого из бесконечного числа натуральных чисел. Обозначим эти предложения как p0(x), p1 (x) и так далее: некоторые из них являются мусором, некоторые верны. Организуем теперь все соответствующие им гёделевские номера в огромную таблицу (с астрономически большими номерами там, где мы подставили малые номера). Верхний левый фрагмент этой таблицы может быть чем-то вроде:

Вход 0 1 2 3
Предложение 0 0 55 27 4
1 51 3 7 17
2 0 20 30 40
3 13 22 11 2
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×