однако, имеют двадцать две, а картофель, к нашему стыду, двадцать четыре. И действительно, подсчет так труден, что долгое время число хромосом у человека считали таким же, как у шимпанзе (двадцать четыре пары); и только проглотив свою гордыню и признав, что число хромосом не связано с самоуверенным восхищением собой, мы смогли принять правильное число, двадцать три.[8]

На рубеже веков биологи стали подозревать, что хромосомы являются инструментом наследственности. Эти хромосомы зашагали в ногу с менделевской наследственностью в 1902 г., когда Уолтер Саттон (1877-1916), выпускник и сотрудник Колумбийского университета в Нью-Йорке, изучавший сперму кузнечиков (а именно, большого равнинного кузнечика, Brachystola magna, который встречается повсеместно на равнинах запада Соединенных Штатов и Мексики и имеет большие клетки и сносно видимые хромосомы), обнаружил, что парные хромосомы действительно делятся, причем разные члены каждой пары попадают в разные клетки. Открытие Саттона обычно называют теорией Саттона-Бовери, поскольку Теодор Бовери (1862-1915), немецкий биолог, работавший над яичниками морских ежей, объявил в 1904 г., что он тоже пришел к этой мысли, и как раз в то же время, что и Саттон. Бовери действительно внес (наряду с другими) несколько центральных идей, но более важно, что у него были влиятельные друзья.

На этой стадии мы можем заключить, что менделевские гены заключены в саттоновских хромосомах. Мир был подготовлен к новой науке, и в 1905 г. немного странноватый Уильям Бейтсон предложил термин «генетика», сначала в письме к кембриджскому зоологу Адаму Седвику, а затем, в 1906 г., публично на третьей международной конференции по гибридизации. О тяжеловесности его стиля, а возможно, и о высотах, которых достигла связь науки с общественностью за сто лет, можно судить по его замечанию,

что этот термин в достаточной мере указывает на то, что наши труды посвящены разъяснению феномена наследственности и изменчивости: другими словами, физиологии наследования, со всеми вытекающими из нее аспектами теоретических проблем эволюционистов и систематиков, и приложениями к практическим проблемам размножения, будь то животных или растений.

Прежде чем сделать следующий шаг в генетику и внутренний мир наследственности, нам необходимо узнать, что включают в себя два решающих процесса: митоз, деление соматических клеток (обычных клеток тела), и мейоз, образование гамет (спермы и яйцеклетки, пыльцы и семяпочки) в гонадах (половых органах) животных и в пыльниковых мешочках и завязях растений. Сложность последнего процесса является одной из причин, объясняющих, почему эволюция полового размножения так трудна для понимания и почему она была столь грандиозным эволюционным подарком (глава 1). Тем не менее перед Природой возникла задача, и мейоз — а это логически гораздо более сложная задача, чем митоз — появляется там и тогда, где и когда он необходим. Тут не учебник биологии, поэтому я приведу лишь эскиз этих двух процессов, подробный настолько, насколько это необходимо для понимания дальнейшего.

Сначала рассмотрим митоз, копирование соматических клеток. Жизнь клетки циклична, и лишь около десяти процентов ее времени отведено митозу. Остальное время, однако, критически важно, поскольку на его протяжении приготовляются многие вещества, которые будут использованы в акте копирования. Большую часть этого лежащего под паром, но плодородного, времени все двадцать три пары наших хромосом вытягиваются и сложным образом распределяются по ядру клетки. При наступлении митоза (рис. 2.2) хромосомы стягиваются в спирали, становясь более подготовленными к движению в разных направлениях. На этой стадии становится также видно, что каждая хромосома уже подверглась копированию, поскольку она уже состоит из двух идентичных стержнеподобных единиц, называемых хроматидами, соединенных вместе областями, называемыми центромериями, принимая облик, похожий на вытянутое X. Затем оболочка ядра расходится, и компоненты ядра вместе с окружающей цитоплазмой, сложной смесью составов и структур, находящихся внутри стенок клетки, но вне ядра, сливаются в одно. Хроматиды теперь растаскиваются в стороны, и между двумя отрядами хромосом (которыми мы теперь считаем разделившиеся хроматиды) начинает формироваться клеточная мембрана, новая мембрана ядра начинает возникать вокруг каждой копии, спирали хромосом разворачиваются, и мы получаем уже две идентичных клетки вместо одной.

Рис. 2.2. Процесс митоза, деление соматической клетки на две копии. Первоначально хромосомы распределены по всему ядру (изображаемому здесь в виде внутренней сферы). Когда деление начинается, хромосомы свертываются в спирали, удваиваются и образуют протяженные объекты в форме буквы X (здесь мы показываем лишь два из них; в клетке человека имеются двадцать три таких пары), состоящие из двух хроматид, соединенных центромериями. Хромосомы располагаются в линию на центральной плоскости, мембрана ядра разжижается, хромосомы разделяются и по отдельности выталкиваются в цитоплазму клетки. Затем мембрана ядра преобразуется, а мембрана клетки начинает закрываться вокруг каждого из новых ядер. Наконец, хромосомы раскручиваются, и мы получаем две идентичные диплоидные клетки (клетки со спаренными хромосомами) там, где первоначально была одна.

Теперь рассмотрим мейоз, образование гамет. Этот процесс гораздо более тонок, чем митоз, поскольку конечным выходом в нем должно быть формирование четырех клеток, каждая с одной половиной от пары хромосом (которых у человека двадцать три). Этот процесс является довольно сложным, поэтому давайте проследим его шаги на рис. 2.3, где мы сосредоточились на паре хромосом. Первоначально хромосомы сплетены вместе и заполняют ядро, но при начале мейоза они расплетаются и сжимаются. На этой стадии через микроскоп становится видно, что каждая хромосома удвоилась и состоит из двух хроматид, соединенных центромериями в форме обычного вытянутого X, в точности как при митозе. Теперь, однако, пара материнских и пара отцовских хроматид движутся вместе и формируют продолговатый объект, похожий на две стороны застежки-молнии. Каждая хромосома прикрепляется к оболочке ядра своими концами, которые называются теломерами («удаленными частями»); такая постановка на якорь, возможно, помогает одной стороне «молнии» найти своего партнера. Пока две удвоенные хромосомы лежат вместе, вещество в хроматиде, представляющей отцовскую составляющую, заменяется на вещество соответствующей области хроматиды, предоставленной матерью. Это мгновение, когда в организме происходит генетическое изменение.

Рис. 2.3. Процесс мейоза, образования гамет. Стратегией мейоза является превращение диплоидной клетки в четыре гаплоидных клетки (клетки с одиночными версиями хромосом) и создание генетической композиции родительских хромосом. Мы снова показываем лишь одну пару хромосом в родительской клетке. Первоначально две хромосомы распределены по всему ядру. Однако, когда начинается мейоз, они свертываются в спирали и удваиваются, чтобы образовать две пары соединенных между собой хроматид, так же как при митозе. Однако соответствующие пары сопряженных хроматид перемещаются вместе и, находясь по соседству, обмениваются генетическим материалом. Затем они мигрируют к центральной плоскости, где происходит первое деление, подобное происходящему при митозе (в деталях мы его не показываем) и дающее в результате две клетки с двумя хромосомами в каждой. Затем следует второе митотическое деление, в котором две хромосомы каждого ядра разделяются снова. Процесс оканчивается появлением четырех гаплоидных клеток, каждая из которых содержит хромосому, представляющую собой генетическую смесь двух хромосом клеток родителей. Воспроизведение теперь, на понятийном уровне, но не механистически, является обращением мейоза, в котором одна хромосома в гамете, предоставленной одним из родителей, соединяется с другой хромосомой, предоставленной другим родителем.

После этого временного затора в истории организма, процесса кроссинговера

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×