многие дипептиды не могут быть закодированы (аспартам является одним из них). Однако эти запрещенные комбинации начинают обнаруживать, а это показывает, что Природа не использует элегантность перекрывающегося кода: она требует большей гибкости для своих действий в непрекращающейся взыскательной игре эволюции. Сидни Бреннер (р. 1927) осуществил исчерпывающий анализ этой проблемы: он показал, что все возможные перекрывающиеся коды не совместимы с известными последовательностями аминокислот. Другим, даже более заметным гвоздем в этом, теперь уже плотно заколоченном, гробу явился тот факт, что изменение одной буквы может изменить состав белка сразу на три аминокислоты. Действительно, если бы цепочка AGTCTTG подверглась мутации AGGCTTG, то она состояла бы из кодонов AGGCTTG, AGGCTTG, AGGCTTG и так далее, возможно, со зловещими последствиями для белка и организма, который часто не может пережить замены даже одного основания.
Существовал еще один тупиковый путь среди экономичных и элегантных идей, к которым так благосклонны умозрительные физики и которые Природа с презрением отвергает. Это была проблема пунктуации. Как мы можем узнать, где начало? Даже в неперекрывающемся коде …AGTCTTG… возможны разночтения …(AGT)(CTT)(G…, …A)(GTC)(TTG)…, …AG)(TCT)(TG… и так далее. Различные выборы, представленные этими примерами, называются
Но только не Природой. Она раздавила своей пятой и этот вид неограниченного умозрения и остановила дальнейшее расточение пышных фантазий в 1961 г. Акт раздавливания зарегистрировали Маршалл Ниренберг и Генрих Маттей, которые показали, что TTT является вполне пригодным кодоном и что он означает фенилаланин. Так элегантный и экономный код без запятых был обращен в пыль.
Оказалось, что Природа блефовала в своей обычной бессознательной и непреднамеренно коварной манере. Она произвела самый простой код из всех возможных, не заботясь об избыточности и не обращая особого внимания на проблему чтения кода скользящим окном. Настоящий генетический код, который постепенно был собран по кусочкам в 1960-е гг., существенно избыточен, в нем до шести кодонов могут соответствовать одной и той же аминокислоте и три означают остановку (рис. 2.11). Как можно видеть задним числом, избыточность является очень умным ходом, поскольку уменьшает вероятность того, что «ошибки» копирования будут иметь фатальные последствия. Например, каждая из групп CCT, CCC, CCA и CCG кодирует пролин, так, что ошибки в последней букве не важны. Даже когда изменение одной буквы является значимым, результатом этого часто является замена одной аминокислоты на другую, ей подобную. К примеру, замена TTT на TAT приводит к замещению фенилаланина его кузеном тирозином. Код является в этом отношении почти оптимальным. В результате, поскольку все шестьдесят четыре кодона являются жизнеспособными, Природа имеет пространство для вариаций и экспериментов, как нам уже доводилось отмечать выше.
Рис. 2.11. Генетический код и структуры аминокислот в обозначениях трехбуквенных кодонов. Например, читая от центра, кодон UAC кодирует тирозин (Tyr). Заметим, что U означает урацил (рис. 2.12). Все аминокислоты имеют обозначения, показанные внутри круга. Заметим, что некоторые аминокислоты встречаются более чем в одном положении и что код существенно избыточен, особенно в своей третьей букве. Например, все тройки ACG, ACU, ACT и АСА являются кодом для треонина (Thr).
Вопрос о способе интерпретации кода внутриклеточными механизмами был третьим барьером, который надо было взять. Основная проблема состояла в том, что ДНК заключена в ядре клетки, в то время как синтез белка происходит в окружающей его цитоплазме. Молекула ДНК слишком велика, чтобы проникнуть в цитоплазму через мембрану ядра. Так каким же образом информация доставляется к месту своего использования?
В дело вступает
Рис. 2.12. Основание урацил, U, которое появляется на месте тимина в молекуле РНК. Урацил отличается от тимина потерей метиловой группы (СН3) в северо-восточном углу молекулы последнего. Стрелка указывает точку прикрепления рибозы, а точечные линии отмечают положение водородных связей, которые эта молекула образует с аденином.
Существуют два главных типа РНК, а именно, информационная РНК (иРНК) и транспортная РНК (тРНК). Сначала мы сосредоточим внимание на иРНК, поскольку она переносит в цитоплазму информацию, закодированную в ДНК. Цепочка иРНК становится носителем информации потому, что ее синтез производится способом, весьма похожим на образование копий ДНК, где одна нить ДНК выполняет роль фермента,
А дальше нас ждут рибосомы (рис. 2.13). Эти ловкие маленькие органеллы (специализированные компоненты клетки с особыми функциями) образуются путем соединения белков и РНК, упакованных в две отдельных капельки, которые затем объединяются в одну функциональную единицу, прикрепляясь к иРНК, чтобы выйти из ядра клетки в опасный химический мир цитоплазмы. Другой компонентой цитоплазмы, на