зрения, это была пустая трата времени. Не поймите меня неправильно: это была плодотворно пустая трата времени. Она была плодотворной, поскольку помогла показать, что тепло есть форма энергии, что невозможно произвести работы больше, чем запасено тепла, и что тепла производится не больше, чем произведено работы. Это была пустая трата времени лишь потому, что теперь мы понимаем работу и тепло как две формы одной целостности, энергии, измеряем их одними и теми же единицами и больше не нуждаемся в переводе одной единицы в другую.

Джеймс Джоуль (1818-89) является тем, кто заслуживает наибольшего уважения за исключительно плодотворную пустую трату времени. Джоуль, рожденный в Манчестере, сын богатого пивовара, имел достаточно собственных средств, чтобы проводить исследования до тех пор, пока около 1875 г. деньги не кончились. В своем знаменитом эксперименте Джоуль использовал быстро вращающиеся гребные колеса, приводимые в движение падающим грузом и баламутящие воду, и измерял подъем температуры воды (рис. 3.8). Таким способом он сумел показать, что работа может быть преобразована в тепло. Сравнивая работу, необходимую, чтобы увеличить температуру воды на заданную величину, с количеством тепла, нужным для того, чтобы достичь того же эффекта, он смог измерить механический эквивалент теплоты. Хотя он и измерял величину, которая ныне бесполезна, он заслуживает безмерных похвал за то, что установил эквивалентность тепла и работы и таким образом показал, что эта величина, на попытки измерения которой он потратил так много времени, не была важной. Для увековечения памяти о его вкладе единица, которой измеряются работа, тепло и, конечно, энергия в целом, названа джоулем. Джоуль (Дж) очень маленькая единица энергии: каждый удар человеческого сердца производит работу около 1 Дж. Каждый день, в соответствии приблизительно со ста тысячами ударов, ваше сердце производит около ста тысяч джоулей работы, гоня кровь по вашему телу, поэтому вам необходимо поглощать достаточно пищи, чтобы обеспечить количество энергии, достаточное для поддержания его тикания. (Думание об этом требует немного больше энергии.)

Рис. 3.8. Идеализация прибора Джоуля для измерения механического эквивалента теплоты. Падающий груз вращает лопасти в воде, помещенной в изолированный контейнер. Проделанная работа может быть вычислена с помощью высоты, на которую опускается груз. Отслеживается температура воды, и величина поднятия температуры затем используется, чтобы вычислить количество теплоты, необходимое для достижения того же эффекта.

Работы Джоуля и его современников без сомнений установили, что работа и тепло являются формами энергии и что после принятия их в расчет балансовый отчет энергии остается неизменным. Доказано, что энергия сохраняется даже в грохочущих машинах, которые жили за счет тепла и фыркали паром, не говоря уже о более простых системах частиц, составляющих тела, рассматриваемые ньютоновской динамикой.

Очевидная универсальная справедливость закона сохранения энергии исключает возможность построить когда-нибудь вечный двигатель. Вечный двигатель является прибором, который производит работу, не поглощая горючее. То есть он создает энергию. Энергия жуликов, однако, судя по всему, вечна, и все виды фантастических машин по-прежнему демонстрируются и неизменно, после анализа или просто разбирания на части, оказываются надувательством. Мы так уверены, что энергия сохраняется, что ученые (и патентные бюро) больше не рассматривают серьезно заявления об опровержении этого факта, и поиск вечного движения сегодня считается занятием чудаков.

Хотя тепло и работа являются двумя ликами энергии, между ними, как и предполагает здравый смысл, имеется разница. Полное понимание тепла и работы, и того, каким образом они выражают энергию, придется отложить до развития молекулярного понимания этого определения. И, как это часто бывает в науке, вместе с пониманием приходит осознание того, что таких вещей не существует: нет такой вещи, как тепло и нет такой вещи, как работа! Поскольку очевидно, что мы в нашей повседневной жизни просто окружены обоими, это замечание заключает в себе больше, чем кажется с первого взгляда. Давайте вникнем в это.

Во-первых, что я имею в виду, когда утверждаю вещь, очевидно парадоксальную и противоречащую всему, что было сказано прежде: ни тепло, ни работа не есть формы энергии? Ключевым пунктом здесь является то, что оба явления являются путями переноса энергии из одного места в другое. Работа есть один путь переноса, тепло — другой. Нет такой вещи, как «работа», запасенная в двигателе и высвобождаемая, когда мы едем по дороге или поднимаем груз. В точности так же (хотя это и противоречит тому, что мы используем этот термин в легкомысленных разговорах) не существует такой вещи, как «тепло», запасенное в объекте, несмотря даже на то, что мы можем думать об объекте, как о горячем. Тепло — это способ переноса энергии: это энергия в переходе, а не энергия, которой что-то обладает. Возможно, вы уже можете уловить, что, коль скоро я разъясняю, как именно вам следует понимать термин «тепло», вам следует отринуть все прежние понятия, основанные на неточных терминах повседневной речи. Чтобы создать новый термин, ученые часто выбирают знакомое слово, срезают с него мясо и жир и используют лежащую под ними кость. И так же часто ученые совершенствуют язык, чтобы он не был замкнутым в себе и холодным, и даже отбивают хлеб у поэтов, но они ведь действительно знают о чем идет речь.

Работа является энергией, переносимой таким способом, что, по крайней мере в принципе, эту энергию можно использовать для поднятия груза (или, в более общем случае, для движения объекта против противодействующей силы). Не было никакой работы, запасенной в двигателе до события, она также не появилась в сдвинутом объекте после события. В двигателе перед событием была запасена абстрактная сущность, энергия; сдвинутый объект имел после события более высокую энергию, могла стать выше его кинетическая энергия или, в случае поднимания груза, могла увеличиться потенциальная энергия. Энергия была перенесена от двигателя к объекту посредством работы: работа является посредником переноса, а не переносимой сущностью. Ни к чему не обязывающие слова «в принципе» не должны пройти незамеченными. Они в этом примере означают, что энергия, покинувшая двигатель (или какой-нибудь другой рассматриваемый нами прибор), могла бы быть использована для поднятия груза, даже если этого факта не было. Например, работа могла бы быть использована для приведения в движение генератора, который пропускает электрический ток через электронагреватель. Конечным продуктом была бы скорее горячая вода, чем поднятый вес. Однако мы могли использовать эту энергию для поднятия груза, поэтому она была высвобождена как работа.

Тепло — это энергия, которая переносится в результате разницы температур, причем энергия течет от горячего (имеющего высокую температуру) тела к холодному (имеющему низкую температуру). Не было никакого тепла, запасенного в источнике до события; оно не оказалось запасенным в принимающем объекте после события. Это энергия была запасена в источнике до события; нагретый объект получил более высокую энергию после события — могло, например, испариться немного воды или растаять немного льда. Энергия была перенесена от источника к объекту посредством тепла: тепло является посредником переноса, а не переносимой сущностью.

Все становится ясным, когда мы рассматриваем события на молекулярном уровне. Предположим, что мы можем снаружи наблюдать движение атомов в двигателе. Для определенности, давайте посмотрим с близкого, действительно близкого расстояния на поршень, толкаемый расширяющимся газом (в двигателе автомобиля) или поступающим паром (в паровом двигателе). Если бы мы могли рассмотреть атомы поршня, мы увидели бы, что они движутся в том же направлении, что и сам поршень (рис. 3.9). В конце концов, наблюдаемое макроскопическое движение является однородным движением бесчисленных атомов. В паровой турбине нет поршня: вместо этого сила пара вращает лопасти турбины, и мы можем использовать это движение для совершения работы. Если бы мы могли рассмотреть атомы лопастей, мы увидели бы, что они так же движутся по кругу, как и сами лопасти. Когда провод подключен к полюсам электрической батареи, через него движутся электроны, создавая поток электронов — электрический ток. Если бы мы могли рассмотреть электроны в проводе, мы бы увидели, что они движутся в направлении течения тока. Электрический ток можно использовать для совершения работы, например, включив электрический мотор в сеть. В каждом случае работа связана с однородным движением атомов (или электронов). Это и есть то, чем

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×