существованию
Евклид обнаружил, что он может вывести характеристики пространства, включая дедуктивную формулу Хаммурапи, из пяти простых и кажущихся очевидными утверждений, из своих «аксиом». Это было поистине замечательным достижением. Если бы я писал эту книгу 2000 лет назад, я обязательно включил бы аксиомы Евклида в число великих идей науки, поскольку, если не считать одного маленького дефекта, они удовлетворяют критериям, предъявляемым великой идее: они просты, но содержат неограниченно богатые следствия. Дефект, конечно, заключается в том, что они неверны (в том смысле, что они неточно описывают пространство, в котором мы обитаем); но мы можем ненадолго пренебречь этим и воздать Евклиду почести, которые он заслужил.
Евклид сжал свое описание пространства в следующие пять замечаний:
1. Между любыми двумя точками можно провести прямую.
2. Прямая линия без ограничений может продолжаться в любом направлении.
3. Можно построить круг с любым центром и любого радиуса.
4. Все прямые углы равны друг другу.
5. Для любых данных прямой и точки, не лежащей на ней, можно провести через эту точку одну, и только одну прямую, параллельную данной.
(Я несколько упростил эти утверждения, но сохранил их суть.) Пятая аксиома известна как
5'. Для любых данных прямой и точки, не лежащей на ней, нельзя провести через эту точку ни одной прямой, параллельной данной.
Или даже:
5''. Для любых данных прямой и точки, не лежащей на ней, можно провести через эту точку бесконечное число прямых, параллельных данной.
Описание пространства, использующее постулат Евклида о параллельных прямых, называется евклидовой геометрией; описания, основанные на альтернативных постулатах, называются неевклидовыми геометриями.
Пока что мы сосредоточимся на евклидовой геометрии, так как она, безусловно, выглядит подходящей для пространства, в котором мы живем. В тринадцати книгах Евклида показано, что из этих пяти аксиом может быть выведено огромное количество свойств, и эти свойства оказываются верными при их проверке с помощью практических измерений. Одним из следствий этих аксиом, и, в частности, постулата о параллельных прямых, является теорема Пифагора. Поэтому существование нашей мифической формулы Хаммурапи для
Итак, мы сформулировали евклидову геометрию на плоскости, в плоской двумерной области, похожей на поверхность листа бумаги. Однако мы все знаем, или думаем, что знаем, что обитаем в трехмерном пространстве и обладаем свободой движения вверх и вниз так же, как по плоскости. Теорему Пифагора легко распространить на три размерности, включив длину третьей стороны и записав:
Мы не обязаны останавливаться на этом. Математики живут ненасытной страстью к обобщениям, и евклидова геометрия является богатой почвой для обобщений. Хотя большинство из нас не может вообразить что-нибудь за пределами наших домашних трех измерений, легко выразить свойства пространств больших размерностей, используя формулы. Так четырехмерная формула Пифагора будет иметь вид:
Вы могли бы подумать, что в размышлениях о пространствах с более высокими, чем три, размерностями мало пользы, если не считать интеллектуального удовольствия, но вы были бы неправы. Мы увидим, к примеру, что способность переходить из размерности в размерность является ценным способом изучения структуры нашего мира. Более того, можем ли мы быть уверены, что в нашем реальном мире имеются только три измерения, или есть несколько — даже много — других измерений, которые как-то спрятаны от нас? Мы видели в главе 8, что такой уверенности нет, так как, может быть, мы обитаем в десятимерном пространстве с дополнительным измерением в виде времени.
Я утверждал, что наше воображение не может выйти за пределы трех измерений. Это не вполне верно. Некоторые люди, потратившие в жизни много времени на изучение геометрий более высоких размерностей, заявляют, что имеют некоторое отдаленное представление о связях, существующих в четырех, а не в трех измерениях, и создают ошеломляющие компьютерные образы, изображающие трехмерные сечения четырехмерного, мира (рис. 9.1).[45] Я не призываю вас направить ваши умственные способности по этому пути, но для подготовки к тому, что последует дальше, мы нуждаемся в некотором знакомстве с четырехмерными ландшафтами. Чтобы осуществить это, мы должны вновь пройти фрагменты пути интеллектуальной революции, инициированной итальянскими художниками в конце тринадцатого, начале четырнадцатого веков, такими как Джотто ди Бондоне и Пьеро делла Франческа, которые начали передавать три измерения в двух, используя перспективу, математические основы которой заложил в конце восемнадцатого века Гаспар Монж, граф де Пелоуз (1746-1818) в своей