гравитационное поле для компенсации изменений от точки к точке. Физики предпочитают пользоваться обратным утверждением, а именно: гравитационное поле поддерживает в природе локальную калибровочную симметрию, возможность свободно изменять масштаб от точки к точке пространства. В отсутствие гравитации возможна только глобальная симметрия; не нарушая законов физики, можно только переходить от одной прямолинейной траектории к другой. При наличии гравитации возможно преобразование к траекториям любой формы без нарушения законов физики. Напомним, что под симметрией мы понимаем инвариантность относительно некой операции. Симметрия, о которой только что говорилось, – это инвариантность законов физики относительно любых изменений формы траектории движения. С этой точки зрения гравитационное взаимодействие представляет собой проявление абстрактной симметрии, локальной калибровочной симметрии, лежащей в основе законов реального мира. Словно Творец сказал сам себе: “Мне так нравятся красота и симметрия! Прекрасно, если. повсюду воцарится калибровочная симметрия. Да будет так! Но что я вижу? Попутно возникло и новое поле. Назовем его гравитацией”.

Значение концепции калибровочной симметрии заключается в том, что благодаря ей создается не только гравитационное, а и все четыре фундаментальных взаимодействия, встречающиеся в природе. Все их можно рассматривать как калибровочные поля. В квантовом описании калибровочные поля связаны с частицами вещества и концепцию калибровочного преобразования следует расширить, связав с фазой квантовой волны, описывающей частицу. Входить в технические детали этой процедуры вряд ли стоит. Существенно другое: в природе существует целый ряд локальных калибровочных симметрий и необходимо соответствующее число полей для компенсации этих калибровочных преобразовании. Силовые поля можно рассматривать как средство, с помощью которого в природе создаются присущие ей локальные калибровочные симметрии. С этой точки зрения, например, электромагнитное поле не просто определенный тип силового поля, существующего в природе, а проявление простейшей из известных калибровочных симметрий, совместимой с принципами специальной теории относительности. Калибровочные преобразования в этом случае соответствуют изменениям потенциала от точки к точке.

Интересно отметить, что физик-теоретик, ничего не знающий об электромагнетизме, но убежденный, что природа зиждется на симметрии, мог бы сделать вывод о существовании электромагнитных явлений, основываясь лишь на требовании простейшей локальной калибровочной симметрии и так называемой симметрии Лоренца—Пуанкаре специальной теории относительности, о которой мы упоминали в гл. 4. Используя математику и основываясь только на существовании этих двух симметрий, теоретик смог бы построить уравнения Максвелла, не проведя ни единого эксперимента по электричеству и магнетизму и даже не подозревая об их существовании. При этом он, возможно, рассуждал бы так1 коль скоро упомянутые симметрии – простейшие и наиболее утонченные, вряд ли природа не воспользовалась бы ими. Исходя из подобных чисто умозрительных соображений, теоретик пришел бы к выводу о существовании в реальном мире электромагнитных явлений. Он мог бы пойти и дальше: вывести все законы электромагнетизма, доказать существование радиоволн, возможность создания динамо-машины и т.д., т.е. совершить все те открытия, которые в действительности были сделаны на основе реальных экспериментов. Могущество математического анализа, используемого для описания явлений природы, столь велико, что позволяет предвидеть такие особенности, о существовании которых мы и не помышляли.

Калибровочная симметрия – гораздо более важное понятие, чем просто изящный математический прием. В ней скрыт ключ к построению квантовых теорий взаимодействий, свободных от разрушительного действия бесконечных членов уравнений, о чем шла речь в предыдущем разделе. Калибровочная симметрия, как оказалось, тесно связана с перенормируемостью. Чудо КЭД основано на глубокой и простой симметрии, присущей электромагнитному полю. Это наводит на мысль о том, что трудности квантового описания трех других взаимодействий, по-видимому, связаны с тем, что нам не удалось обнаружить полный набор скрытых в них симметрий. Например, если бы теорию слабого взаимодействия можно было сформулировать на языке калибровочных полей, то это способствовало бы успешному построению квантового описания этого взаимодействия.

На первый взгляд, однако, кажется, что на пути к осуществлению такой программы возникает серьезное препятствие. Одна из особенностей калибровочных полей состоит в том, что эти поля – дальнодействующие. Возможность проведения калибровочных преобразований в любой точке требует, чтобы компенсирующие поля действовали во всем пространстве. Для гравитации и электромагнетизма, простирающихся в пространстве и оказывающих влияние на удаленные объекты, это нормально, но слабое взаимодействие существует только на очень малых расстояниях. На квантовом языке это означает, что гравитон и фотон имеют нулевые массы покоя, а переносчики слабого взаимодействия, W и Z-частицы, чрезвычайно массивны. Казалось, что это кладет конец всяким попыткам описания слабого взаимодействия на языке калибровочных полей. Но в 60-е годы в столь неопровержимом на первый взгляд аргументе была обнаружена трещина, и в физике произошел один из случающихся время от” времени гигантских скачков.

8. Великая троица

Новая сила

Оглядываясь на 70-е годы, историки будут рассматривать их как время, когда ученые обнаружили, что в природе вовсе не существует никаких четырех фундаментальных взаимодействий. Электромагнитное и слабое взаимодействия, при поверхностном взгляде весьма разные по своей природе, в действительности оказались двумя разновидностями единого – так называемого электрослабого – взаимодействия, о существовании которого никто и не подозревал.

Объединение этих двух сил стало исторической вехой на пути к суперсиле. Первый шаг сделал более ста лет назад Максвелл, объединив электричество и магнетизм. Электрослабая теория в окончательной форме была создана двумя физиками, работавшими независимо, – Стивеном Вайнбергом из Гарвардского университета и Абдусом Саламом из Империал-колледжа в Лондоне, – опиравшимися на более раннюю работу Шелдона Глэшоу. Теория электрослабого взаимодействия решающим образом повлияла на развитие физики элементарных частиц в последующие годы.

Суть теории Вайнберга и Салама состоит в описании слабого взаимодействия на языке концепции калибровочного поля. Этот шаг следовало предпринять еще до того, как появилась хоть какая-то надежда на унификацию. В предыдущей главе мы говорили, что понятие калибровочной симметрии является ключевым при построении теории взаимодействий, освобожденной от проблемы расходящихся членов.

Представляя слабое взаимодействие в виде калибровочного поля, мы должны исходить из того, что все частицы, участвующие в слабом взаимодействии, служат источниками поля нового типа – поля слабых сил, хотя мы не воспринимаем это поле непосредственно. Слабо взаимодействующие частицы, такие, как электроны и нейтрино, являются носителями “слабого заряда”, который аналогичен электрическому заряду и связывает эти частицы со слабым полем.

Если поле слабого взаимодействия рассматривать как калибровочное (т.е. как способ, которым в природе компенсируются локальные калибровочные преобразования), то первый шаг состоит в установлении точной формы соответствующей калибровочной симметрии. Как мы уже знаем, простейшей калибровочной симметрией обладает электромагнетизм. Не удивительно, что симметрия слабого взаимодействия гораздо сложнее чем электромагнитного, ибо сам механизм этого взаимодействия оказывается более сложным. При распаде нейтрона, например, в слабом взаимодействии участвуют частицы по крайней мере четырех различных типов (нейтрон, протон, электрон и нейтрино), и действие слабых сил приводит к изменению их природы (превращению одних частиц в другие за счет слабого взаимодействия). Напротив, электромагнитное взаимодействие не изменяет природы участвующих в нем частиц.

Вы читаете Суперсила
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату