суживаться, словно его перетянули невидимой, но могучей ниткой. Наконец стерженек истончился и разорвался на две половинки. Обе они в месте разрыва заточены остро, как карандаши.
Возьмем другой стержень — из серого чугуна и повторим опыт. У чугуна тоже образуется узкая перетяжка — «шейка». Запишем показание прибора: 78 процентов пластичности. Смотрите: металл растянулся почти вдвое.
А теперь достанем последний стерженек — из мрамора, хрупкого белого камня. Уже на глубине 100 километров, то есть при 10 тысячах атмосфер, на мраморе намечается «шейка», обнаруживается, что мрамор становится пластичным, может, как говорят, течь.
Нетрудно найти и практическое применение этому явлению. Уже сейчас холодный металл продавливают через узкое отверстие огромным давлением жидкости и получают отличную проволоку. Если же отверстию придать форму шестеренки или трубы и сдавить металл мгновенным высоким давлением, то готовое изделие вылетит из отверстия пулей, буквально со скоростью снаряда — 500 метров в секунду! Причем металл такой шестеренки или трубы будет сжат, упрочен, а на его отполированной поверхности вы не найдете ни одной стружки или зазубрины.
А разве не пригодится для производства особенность, подмеченная физиками: у одного и того же вещества при разном давлении может быть разная валентность. А то, что высоким давлением без всяких реактивов и при комнатной температуре удается разложить любой окисел? Конечно, все это найдет себе применение.
Два слова о температуре. Снижая температуру вещества, мы уменьшаем амплитуду собственных колебаний атомов и даем им возможность сблизиться, уплотниться. Объем вещества уменьшается. Но есть у температур предел, поставленный природой. Это температура абсолютного нуля (-273°). Техника получения глубокого холода так сложна, что для сближения атомов в веществе давлением пользуются чаще, чем температурой. Из металлов цезий поддается сжатию лучше всех других. Стоит подвергнуть его давлению в 12 тысяч атмосфер (технически это задача несложная), и расстояние между его атомами будет таким же, как при температуре -273°.
Давление неразрывно связано с температурой. И если мы хотим познать все свойства веществ, то надо не только подвергать их разным давлениям, но и обязательно менять температуру опыта. Только так можно исследовать размеры кинетической энергии атомов в разных условиях и расстояния между ними. И в этой области для физиков кроется еще много неведомых открытий, необитаемых островов, нерешенных проблем!
Высокое давление в сочетании с предельно низкими температурами может буквально творить чудеса.
Вы уже знаете, по-видимому, что физикам, сочетая технику глубокого охлаждения с давлениями, удалось при температуре -272,2° и давлении 2.6 атмосфер превратить в твердое тело гелий — исключительно важный для науки и промышленности газ.
Расчеты показывают, что с уменьшением расстояния между атомами, например, в кристаллах теллура облегчается возникновение свободных электронов и при давлении около 47 тысяч атмосфер теллур переходит в металлическую фазу. Советские специалисты П. Т. Козырев и Д. Н. Наследов обнаружили, что такое же превращение претерпевает и селен.
Известный английский физик Джон Бернал пришел к выводу, что можно перевести в металлическое состояние даже самый легкий элемент природы — водород.
Недалеко время, когда физики, воспользовавшись давлением около 80 тысяч атмосфер, получат металлический аммоний. Высокие давления позволяют получать сплавы в новых состояниях и с новыми свойствами.
Мы говорили уже о том, что пластичность металлов зависит не от того, как построена кристаллическая решетка вещества, а от числа внешних, валентных электронов. Это, конечно, не значит, что кристаллическую решетку можно вообще не учитывать, исследуя влияние высоких давлений. — Ведь при полиморфных превращениях под давлением возникают иногда и совершенно новые кристаллические формы. А от формы кристаллической решетки зависят многие важные качества металла — например, температура его плавления. И в этой области есть свои парадоксы и нерешенные загадки.
Возьмем, например, йодистый рубидий. При атмосферном давлении он кристаллизуется так, что атомы йода и рубидия образуют кубическую решетку с центрированными гранями. Но вот вы сжали это вещество высоким давлением. Происходит перестройка атомной структуры. В новой решетке уже нет атомов в центре каждой из граней, но зато появляется один атом в центре куба. Обычно под высоким давлением атомы стремятся «упаковаться» в кристаллической решетке как можно плотнее. Есть два типа решеток с самыми плотными упаковками. Это решетка в форме куба с центрированными гранями, а также гексагональная структура (шестигранник). Но каково же было удивление физиков, когда при очень высоком давлении атомы йодистого рубидия избрали для себя не одну из этих форм решетки, а другую — кубическую объемно- центрированную, то есть не с самой плотной упаковкой. Внешне вещество не изменилось, зато вес его резко вырос. Тяжелые кристаллы…
Оказывается, для атомов, сильно отличающихся друг от друга размерами, выгоднее именно такая упаковка. Так, в промежутках между арбузами можно разместить яблоки, не увеличивая объема. Конечно, это только аналогия.
У искусственных алмазов, которые умеют изготавливать сегодня и в СССР и в США, очень высокая твердость. Они царапают даже самые твердые грани естественных алмазов. А это означает, что люди перешагнули через порог твердости, поставленный самой природой, создали материал тверже алмаза и могут получить еще более твердые вещества.
Нетрудно сообразить, какие сказочные перспективы открывают работы ученых в области высоких давлений. Насколько бы поднялись производительность и качество труда, например, токарей, если бы они смогли работать не стальными, а алмазными, практически вечными, нетупящимися резцами? А ведь это окажется возможным уже в ближайшие годы.
Наука давно доказала, что создать вечный двигатель невозможно. Но еще никто не доказал и никогда не докажет, что двигатель вашего автомобиля нельзя сделать вечным. Поставьте на него нестирающиеся алмазные подшипники, и вам не надо будет заботиться о его ремонте.
Наш разговор можно было бы уже закончить. Но, признаться, я боюсь, что найдется молодой паренек, который скажет: «Значит, даже искусственный алмаз уже получен. Что же нам-то, молодым, в будущем останется делать? Неужели только работать алмазными резцами и кататься на автомобиле с вечным двигателем? Ведь хочется самому придумать или открыть что-нибудь такое, от чего у людей бы дух захватило. А вы на нашу долю ничего не оставили…»
Прав ли этот паренек?
Нет, нет, тысячу раз нет!
Вспомните, Геннею удалось в прошлом веке получить искусственные алмазы, не прибегая к сверхвысоким давлениям и температурам, которыми пользовались американцы, получая свои алмазы. А раз это так, значит, проблема дешевого и простого получения алмазов еще не решена. Значит, все впереди. Почему алмаз, если его нагревать, легко превращается в графит, а графит упорно не желает становиться алмазом? Почему этот процесс необратим? Надо найти этот потерянный самородок!
Загадка алмаза — не исключение. Так же непонятно, «не по правилам» ведут себя и боразон (соединение бора с азотом), и черный фосфор, который получают из желтого фосфора при температуре +200° и давлении 12 тысяч атмосфер.
Можно ли что-нибудь сказать о сроках, когда приоткроется завеса над этими «белыми пятнами»? Ответим уверенно: и в XXI веке тут будет над чем поломать голову. А впрочем… Даже очень опытные люди совершали ошибки, когда пытались предсказать сроки реализации своих идей и открытий. В 1939 году, например, Резерфорду, первому человеку, расщепившему атомное ядро, задали вопрос: «Какое практическое применение в наше время будет иметь ваше открытие?» — «Никакого», — ответил ученый. А в 1954 году весь мир отмечал историческое событие — пуск первой в истории советской атомной электростанции.
Так что самое лучшее — не гадать о сроках, а работать, развивать нашу науку, строить жизнь, которая опережает самые смелые предсказания.