and concerns they would take legal action against her. With great courage – and, shamefully, without the support of her university – Olivieri presented her findings at several scientific meetings and in academic journals. She believed she had a duty to disclose her concerns, regardless of the personal consequences. It should never have been necessary for her to need to make that decision.
The single cheap solution that will solve all of the problems in the entire world
What’s truly extraordinary is that almost all of these problems – the suppression of negative results, data dredging, hiding unhelpful data, and more – could largely be solved with one very simple intervention that would cost almost nothing: a clinical trials register, public, open, and properly enforced. This is how it would work. You’re a drug company. Before you even start your study, you publish the ‘protocol’ for it, the methods section of the paper, somewhere public. This means that everyone can see what you’re going to do in your trial, what you’re going to measure, how, in how many people, and so on,
The problems of publication bias, duplicate publication and hidden data on side-effects – which all cause unnecessary death and suffering – would be eradicated overnight, in one fell swoop. If you registered a trial, and conducted it, but it didn’t appear in the literature, it would stick out like a sore thumb. Everyone, basically, would assume you had something to hide, because you probably would. There are trials registers at present, but they are a mess.
How much of a mess is illustrated by this last drug company ruse: ‘moving the goalposts’. In 2002 Merck and Schering Plough began a trial to look at Ezetimibe, a drug to reduce cholesterol. They started out saying they were going to measure one thing as their test of whether the drug worked, but then announced, after the results were in, that they were going to count something else as the real test instead. This was spotted, and they were publicly rapped. Why? Because if you measure lots of things (as they did), some might be positive simply by chance. You cannot find your starting hypothesis in your final results. It makes the stats go all wonky.
Adverts
‘Clomicalm tablets are the only medication approved for the treatment of separation anxiety in dogs.’
There are currently no direct-to-consumer drug adverts in Britain, which is a shame, because the ones in America are properly bizarre, especially the TV ones. Your life is in disarray, your restless legs/migraine/cholesterol have taken over, all is panic, there is no sense anywhere. Then, when you take the right pill, suddenly the screen brightens up into a warm yellow, granny’s laughing, the kids are laughing, the dog’s tail is wagging, some nauseating child is playing with the hose on the lawn, spraying a rainbow of water into the sunshine whilst absolutely laughing his head off as all your relationships suddenly become successful again. Life is good.
Patients are so much more easily led than doctors by drug company advertising that the budget for direct- to-consumer advertising in America has risen twice as fast as the budget for addressing doctors directly. These adverts have been closely studied by medical academic researchers, and have been repeatedly shown to increase patients’ requests for the advertised drugs, as well as doctors’ prescriptions for them. Even adverts ‘raising awareness of a condition’ under tighter Canadian regulations have been shown to double demand for a specific drug to treat that condition.
This is why drug companies are keen to sponsor patient groups, or to exploit the media for their campaigns, as has been seen recently in the news stories singing the praises of the breast cancer drug Herceptin, or Alzheimer’s drugs of borderline efficacy.
These advocacy groups demand vociferously in the media that the companies’ drugs be funded by the NHS. I know people associated with these patient advocacy groups – academics – who have spoken out and tried to change their stance, without success: because in the case of the British Alzheimer’s campaign in particular, it struck many people that the demands were rather one-sided. The National Institute for Clinical Excellence (NICE) concluded that it couldn’t justify paying for Alzheimer’s drugs, partly because the evidence for their efficacy was weak, and often looked only at soft, surrogate outcomes. The evidence is indeed weak, because the drug companies have failed to subject their medications to sufficiently rigorous testing on real-world outcomes, rigorous testing that would be much less guaranteed to produce a positive result. Does the Alzheimer’s Society challenge the manufacturers to do better research? Do its members walk around with large placards campaigning against ‘surrogate outcomes in drugs research’, demanding ‘More Fair Tests’? No.
Oh God. Everybody’s bad. How did things get so awful?
I have argued on various occasions that, wherever possible, all treatment where there is uncertainty should be randomised, and in the NHS we are theoretically in a unique administrative position to be able to facilitate this, as a gift to the world. For all that you may worry about some of its decisions, the National Institute for Health and Clinical Excellence (NICE) has also had the clever idea of recommending that some treatments – where there is uncertainty about benefit – should only be funded by the NHS when given in the context of a trial (an ‘Only in Research’ approval). NICE is frequently criticised – it’s a political body after all – for not recommending that the NHS funds apparently promising treatments. But acquiescing and funding a treatment when it is uncertain whether it does more good than harm is dangerous, as has been dramatically illustrated by various cases where promising treatments turned out ultimately to do more harm than good. We failed for decades to address uncertainties about the benefits of steroids for patients with brain injury: the CRASH trial showed that tens of thousands of people have died unnecessarily, because in fact they do more harm than good. In medicine, information saves lives.
In this subject, like many medics of my generation, I am indebted to the classic textbook
How the Media Promote the Public Misunderstanding of Science
We need to make some sense of all this, and appreciate just how deep into our culture the misunderstandings and misrepresentations of science go. If I am known at all, it is for dismantling foolish media stories about science: it is the bulk of my work, my
We have covered many of the themes elsewhere: the seductive march to medicalise everyday life; the fantasies about pills, mainstream and quack; and the ludicrous health claims about food, where journalists are every bit as guilty as nutritionists. But here I want to focus on the stories that can tell us about the way science is perceived, and the repetitive, structural patterns in how we have been misled.
My basic hypothesis is this: the people who run the media are humanities graduates with little understanding of science, who wear their ignorance as a badge of honour. Secretly, deep down, perhaps they resent the fact that they have denied themselves access to the most significant developments in the history of Western thought from the past two hundred years; but there is an attack implicit in all media coverage of science: in their choice of stories, and the way they cover them, the media create a parody of science. On this template, science is portrayed as groundless, incomprehensible, didactic truth statements from scientists, who themselves are socially powerful, arbitrary, unelected authority figures. They are detached from reality; they do work that is either wacky or dangerous, but either way, everything in science is tenuous, contradictory, probably going to change soon and, most ridiculously, ‘hard to understand’. Having created this parody, the commentariat then attack it, as if they were genuinely critiquing what science is all about.
Science stories generally fall into one of three categories: the wacky stories, the ‘breakthrough’ stories, and the ‘scare’ stories. Each undermines and distorts science in its own idiosyncratic way. We’ll do them in order.
Wacky stories – money for nothing
If you want to get your research in the media, throw away the autoclave, abandon the pipette, delete your copy of