Если требуется определить высоту целого ряда точек местности
Короче говоря, надо сложить отдельно все показания при взглядах вперед и все показания при взглядах назад, и из первой суммы вычесть вторую. В результате получим возвышение конечной точки над начальной; отрицательный результат покажет, насколько конечная точка ниже начальной.
Разность высот конечных точек
[
Раскрыв скобки, имеем
или
Второй концентр
VIII. ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ О ТРЕУГОЛЬНИКАХ
§ 48. Равнобедренный треугольник
С основными свойствами всякого треугольника мы познакомились в §§ 15–22. Самые главные из них следующие: сумма углов треугольника равна 180°; треугольники равны друг другу или по трем сторонам, или по двум сторонам и углу между ними, или по одной стороне и двум углам (для краткости мы обозначили эти случаи так:
Предварительные упражнения
Укажите равные треугольники в фигуре черт. 134, где
Каковы углы
Мы знаем, что в р а в н ы х треугольниках против равных сторон лежат равные углы. Покажем, что и
в о д н о м и т о м ж е т р е у г о л ь н и к е п р о т и в р а в н ы х с т о р о н л е ж а т р а в н ы е у г л ы.
Пусть у нас взят треугольник
Треугольник с двумя равными сторонами называетс я р а в н о б е д р е н н ы м; его равнее стороны называются б о к о в ы м и с т о р о н а м и этого треугольника, а третья сторона – его о с н о в а н и е м.
Поэтому рассмотренное сейчас свойство треугольника можно высказать короче так:
в р а в н о б е д р е н н о м т р е у г о л ь н и к е у гл ы п р и о с н о в а н и и р а в н ы.
Можно удостовериться и в обратном соотношении: если в треугольнике имеются равные углы, то стороны, лежащие против этих углов, – равны; или-короче сказать:
в т р е у г о л ь н и к е п р о т и в р а в н ы х у г л о в л е ж а т р а в н ы е с т о р о н ы.
Чтобы убедиться в этом, возьмем треугольник (черт. 135), в котором два угла равны: уг.