Все доселе перечисленное составляет, так сказать, фон математического мышления; и на нем, рядом с построениями, носящими более или менее ясный отзвук действительности, или такими, которые по этому самому условно приложимы к реальностям (как идеальный образец к соответствующему приближению), на каждом шагу встречаются полные разрывы с действительностью. Произведениям из трех множителей, величинам в 3-й степени и функциям о двух независимых переменных соответствуют еще отвлечения от реальностей — объемы; а соответственные выражения кверху от этих пределов уже не имеют никаких основ в действительности. Отрицательные величины условно приложимы к реальностям, а так называемые мнимые величины представляют количественные невозможности — не величины, а формы. А между тем в анализе все такие построения являются равноправными членами с остальными, т. е. математик, оперируя над ними обычными для прочих величин способами, получает верные результаты.
По смыслу все такие построения суть продукты обычных в математике операций над знаками количеств — над формами, независимо от содержания. Имея дело с абстрактами, математик неизбежно приводится к мышлению формами, т. е. внешними изображениями абстрактов; непогрешимость же его выводов при таком условии определяется тем, что в математике (и только здесь) форма
Отсюда уже становится понятно происхождение всех вообще разрывов математики с действительностью, в основе их лежит размножение форм по аналогии и путем обобщения.
Совокупность всех таких построений в математике и была мной отнесена в четвертую категорию внечувственных объектов, под именем логических построений без реальной подкладки.
Как же отнестись к таким проявлениям человеческого ума? Представляют ли они наивысшую инстанцию мышления, создавая продукты, заходящие за всякие пределы опыта, и дают ли право думать, что человеческая мысль способна вообще, т. е. не в одной области количественных отношении, заходить безнаказанно за эти пределы, путем логических или, как часто говорится, путем умозрения? Отрицательный ответ на первый вопрос очень прост и ясен: все трансцендентные, т. е. превосходящие опыт, математические построения производятся, как уже было сказано, обычными логическими операциями, знаками, следовательно, не открывают никаких новых особенностей в мыслительной способности человека. Что же касается второго вопроса, ответ на него всего естественнее искать в истории развития (именно в прогрессировании) опытных знаний, так как именно здесь творческая мощь человеческого ума выступает за все последнее столетие с особенной яркостью.
Опытное знание, двигаясь вперед, открывает, как говорится, все новые и новые горизонты — ряды загадок, вытекших из опыта, но лежащих за его пределами. К счастью для человечества, ум не останавливается на пороге опыта и идет дальше, в область загадок. Одни из них оказываются разрешимыми лишь отчасти или условно; другие разрешимы тотчас же и вполне наличными средствами особенно искусного исследователя, а некоторые, будучи вполне понятными для ума, не могут быть разрешены опытом только в данную минуту. Так,
Значит, путем логических построений можно действительно додуматься до новых истин (положительных знаний), но
То же в сущности происходит и при условном решении опытных загадок, т. е. при построении гипотез опытных наук. Достоверностью пользуются, как известно, только те из них, которые стоят на пороге объясняемых положительных фактов и где дополнительные гипотетические члены, имея значение логических выводов из определенных посылок, облечены в реальную форму, т. е. не суть реальности действительные, а реальности возможные.
Итак, подобно тому, как в обыденной жизни за пределами накопленного человеком опыта лежит для его мысли область
Нужно ли говорить, что забегание мысли в такие отдаленные сферы соответствует в самом счастливом случае витанию ее в области загадок, без всякой возможности доказать основательность делаемых выводов, так как твердых критериев для различения действительной возможности от кажущейся вне проверочного научного опыта нет; а такие опыты здесь невозможны.
Здесь я остановлюсь, чтобы резюмировать все доселе сказанное по поводу развития внечувственных продуктов из опытных данных.
Расчленением субъективных и объективных рядов со стороны условий чувствования и действия человек приучается к мысли считать реальным не только то, что непосредственно доступно чувству. Для выводимых этим путем нечувственных продуктов есть на обыденном языке даже родовое имя —
Продолженным действием дробления, в применении к внешним телам, он прямо достигает продуктов, превышающих чувства. Убеждение в раздельном существовании каждой невидимой пылинки основано у всякого человека на опытном знании фактов (вывод из сопоставления сходных рядов), что по мере продолжения действия дробления увеличивается дробность раздельных частей.
Продолженным действием сочетания в применении к внешним телам он доходит до познания факта (опять вывод из сопоставления сходных рядов), что по мере продолжения действия сочетания нарастает постоянно множественность собираемых частей и постоянно увеличивается протяженность группы. При этом