устойчивости, но и возможностью реагирования на изменение внешнего воздействия.

Понятно, что стоящий на выпрямленных ногах человек может, сохраняя вертикальное положение позвоночника, перемещать ЦМ только вниз.

Рис. 42

«Ноги на ширине плеч, колени согнуты так, что расположены в одной вертикальной плоскости с мысками обуви. Корпус прямой. Руки согнуты в локтях, предплечья вертикальны, пальцы на уровне глаз, руки не выходят за пределы корпуса».

Человек, который, согнув колени, присел, оставляя позвоночник в вертикальном положении, получает дополнительные преимущества. Он может теперь перемещать свой ЦМ не только вниз, но и вверх. Эта на первый взгляд незначительная деталь имеет существенное значение для повышения ответной реакции на действия противника.

Угол статической устойчивости изменяется в процессе двигательного действия. Так, например, если боец, не меняя опорной базы, согнет одну ногу, одновременно выпрямив другую (рис. 43), то произойдет смещение ЦМ на некоторую величину е.

Угол ? определяется как ? = arctg [(0,5d ± e)/ ?цм].

Рис. 43

Знак «плюс-минус» в формуле означает, что угол ? уменьшается относительно линии опрокидывания а—b (точка О), но увеличивается относительно линии е—f(точка О1). Следовательно, устойчивость поддается контролю и управлению. Однако в общем случае на спортсмена, помимо силы тяжести О, в основных плоскостях тела действуют внешние силы (силы воздействия со стороны соперника или окружающей среды). Потеря устойчивости в сагиттальной плоскости из-за меньшей опорной базы d1 наиболее вероятна, а значит, более опасна.

Выведение из состояния равновесия

Существует множество способов выведения противника из состояния равновесия.

Равновесие тела сохраняется до тех пор, пока проекция ЦМ (на рис. 44 – точка С) не выходит за пределы площади опорной базы abefa. Удержание ее в этих пределах может быть осуществлено путем маневрирования («перешагивания» в стороны, вперед-назад), то есть изменения конфигурации и смещения опорной площади.

Итак, задача выведения человека из равновесия сводится к смещению его ЦМ за границы площади опоры.

В качестве примера приведем лишь один вариант выведения из равновесия, а именно: создание опрокидывающего момента.

Пусть сила тяжести G создает относительно линии опрокидывания аb (точка О1 на рис. 45) момент устойчивости Муст = Gа.

Достаточный для его преодоления опрокидывающий момент М1 можно создать незначительной по величине силой Р1, приложенной на относительно большом плече с. Но в этом случае возникает необходимость «фиксировать» линию опрокидывания (иначе противник легко защищается, переступив ногой и отодвигая линию опрокидывания).

Если приложить силу Р2, направив ее не только в сторону, но и вниз, то на плече b она создаст опрокидывающий момент М2 = Р2b.

Приседая, не только добавляют свою массу (т. е. прикладывают дополнительную инерционную силу F = ma), но и лишают противника возможности защищаться (переступив ногой, сместить ЦМ и отодвинуть линию опрокидывания).

Одновременно можно поменять направление атаки, переведя ее из фронтальной плоскости ХОY в сагиттальную – YOZ. Для этого достаточно сдвинуть точку приложения силы Р2 «из плоскости» в сторону задней линии опрокидывания a-f2 (рис. 44). Это резко уменьшает опорную базу, и потеря устойчивости катастрофически неизбежна.

Рис. 45

Рис. 46

Биомеханические аспекты устойчивости

Всякое положение биологического тела является процессом колебательного характера. Точка общего центра тяжести (ОЦТ) тела при статическом положении испытывает колебания в диапазоне 2–3 см вследствие кровообращения, лимфотока, дыхания, мышечного тремора и т. д. биологического тела; это управляемый процесс. Человек может изменять устойчивость своего тела за счёт варьирования факторов устойчивости, которыми являются:

1. Величина площади опоры. Это площадь, заключённая между граничными точками опоры. Она включает в себя активную площадь опоры, возникшую при контакте биологического тела с опорой, и пассивную.

На практике мы в большей степени способны изменять пассивную площадь опоры (например, поставив ноги на ширине плеч). Чем больше общая площадь опоры, тем более устойчиво положение тела. Оптимальная площадь опоры в рукопашном бою – когда ноги ставятся на ширине плеч.

2. Высота расположения точки ОЦТ. Чем ниже точка ОЦТ тела, тем более устойчиво тело.

3. Прохождение линии тяжести. Линия тяжести – это перпендикуляр, опущенный из ОЦТ тела на площадь опоры. Прохождение линии тяжести позволяет оценить устойчивость тела в разных направлениях (для плоского изображения – в передне-заднем направлении). Если линия тяжести проходит через центр площади опоры, то степень устойчивости тела одинакова во всех направлениях; если она смещена в какую-то сторону, то в этом направлении степень устойчивости снижена.

4. Величина углов устойчивости. Угол устойчивости – это угол, образованный линией тяжести и линией, соединяющей ОЦТ с краем площади опоры.

Угол устойчивости – это динамический фактор устойчивости, он соединяет в себе три предыдущих – статических. Попробуйте изменить один из предыдущих факторов устойчивости, это сразу же отразится на

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату