устойчивости, но и возможностью реагирования на изменение внешнего воздействия.
Понятно, что стоящий на выпрямленных ногах человек может, сохраняя вертикальное положение позвоночника, перемещать ЦМ только вниз.

Человек, который, согнув колени, присел, оставляя позвоночник в вертикальном положении, получает дополнительные преимущества. Он может теперь перемещать свой ЦМ не только вниз, но и вверх. Эта на первый взгляд незначительная деталь имеет существенное значение для повышения ответной реакции на действия противника.
Угол статической устойчивости изменяется в процессе двигательного действия. Так, например, если боец, не меняя опорной базы, согнет одну ногу, одновременно выпрямив другую (рис. 43), то произойдет смещение ЦМ на некоторую величину е.
Угол ? определяется как ? = arctg [(0,5d ± e)/ ?цм].

Знак «плюс-минус» в формуле означает, что угол ? уменьшается относительно линии опрокидывания а—b (точка О), но увеличивается относительно линии е—f(точка О1). Следовательно, устойчивость поддается контролю и управлению. Однако в общем случае на спортсмена, помимо силы тяжести О, в основных плоскостях тела действуют внешние силы (силы воздействия со стороны соперника или окружающей среды). Потеря устойчивости в сагиттальной плоскости из-за меньшей опорной базы d1 наиболее вероятна, а значит, более опасна.
Выведение из состояния равновесия
Существует множество способов выведения противника из состояния равновесия.
Равновесие тела сохраняется до тех пор, пока проекция ЦМ (на рис. 44 – точка С) не выходит за пределы площади опорной базы abefa. Удержание ее в этих пределах может быть осуществлено путем маневрирования («перешагивания» в стороны, вперед-назад), то есть изменения конфигурации и смещения опорной площади.
Итак, задача выведения человека из равновесия сводится к смещению его ЦМ за границы площади опоры.
В качестве примера приведем лишь один вариант выведения из равновесия, а именно: создание опрокидывающего момента.
Пусть сила тяжести G создает относительно линии опрокидывания аb (точка О1 на рис. 45) момент устойчивости Муст = Gа.
Достаточный для его преодоления опрокидывающий момент М1 можно создать незначительной по величине силой Р1, приложенной на относительно большом плече с. Но в этом случае возникает необходимость «фиксировать» линию опрокидывания (иначе противник легко защищается, переступив ногой и отодвигая линию опрокидывания).
Если приложить силу Р2, направив ее не только в сторону, но и вниз, то на плече b она создаст опрокидывающий момент М2 = Р2b.
Приседая, не только добавляют свою массу (т. е. прикладывают дополнительную инерционную силу F = ma), но и лишают противника возможности защищаться (переступив ногой, сместить ЦМ и отодвинуть линию опрокидывания).
Одновременно можно поменять направление атаки, переведя ее из фронтальной плоскости ХОY в сагиттальную – YOZ. Для этого достаточно сдвинуть точку приложения силы Р2 «из плоскости» в сторону задней линии опрокидывания a-f2 (рис. 44). Это резко уменьшает опорную базу, и потеря устойчивости катастрофически неизбежна.


Биомеханические аспекты устойчивости
Всякое положение биологического тела является процессом колебательного характера. Точка общего центра тяжести (ОЦТ) тела при статическом положении испытывает колебания в диапазоне 2–3 см вследствие кровообращения, лимфотока, дыхания, мышечного тремора и т. д. биологического тела; это управляемый процесс. Человек может изменять устойчивость своего тела за счёт варьирования факторов устойчивости, которыми являются:
1. Величина площади опоры. Это площадь, заключённая между граничными точками опоры. Она включает в себя активную площадь опоры, возникшую при контакте биологического тела с опорой, и пассивную.
На практике мы в большей степени способны изменять пассивную площадь опоры (например, поставив ноги на ширине плеч). Чем больше общая площадь опоры, тем более устойчиво положение тела. Оптимальная площадь опоры в рукопашном бою – когда ноги ставятся на ширине плеч.
2. Высота расположения точки ОЦТ. Чем ниже точка ОЦТ тела, тем более устойчиво тело.
3. Прохождение линии тяжести. Линия тяжести – это перпендикуляр, опущенный из ОЦТ тела на площадь опоры. Прохождение линии тяжести позволяет оценить устойчивость тела в разных направлениях (для плоского изображения – в передне-заднем направлении). Если линия тяжести проходит через центр площади опоры, то степень устойчивости тела одинакова во всех направлениях; если она смещена в какую-то сторону, то в этом направлении степень устойчивости снижена.
4. Величина углов устойчивости. Угол устойчивости – это угол, образованный линией тяжести и линией, соединяющей ОЦТ с краем площади опоры.
Угол устойчивости – это динамический фактор устойчивости, он соединяет в себе три предыдущих – статических. Попробуйте изменить один из предыдущих факторов устойчивости, это сразу же отразится на