do occur from fencing off the genetic commons. Yes, it’s true that patent protection provides the financial incentive for companies to invest in research and development, which, in turn, generates many useful drugs and inventions. Patents aren’t inherently bad, but Eisenberg argues that certain patents can be problematic when the protected materials resemble a discovery, rather than an invention.

This kind of patent ownership creates bureaucratic stumbling blocks and economic disincentives that can dissuade laboratories from dealing with certain genes. This was the case with hemochromatosis, a hereditary condition that can cause liver or heart failure (the gene that carries the disorder is found in one in ten people). In 1999 two companies were fighting over the ownership rights of the patented gene connected to hemochromatosis. This created confusion over who owned the patent and to whom medical laboratories should pay licensing fees, helping to shut down research on DNA tests that screened for the condition. Five labs halted testing for hemochromatosis, and twenty-one others decided not to offer the test at all.[1]

Professor Eisenberg argues that the existence of a genetic commons speeds efficiency in medical research because it eliminates the need to track down and negotiate with numerous patent owners.

This point was highlighted in 1999 when ten of the world’s largest drug companies created an alliance with five of the leading gene laboratories. The alliance invested in a two-year plan to uncover and publish three hundred thousand common genetic variations to prevent upstart biotechnology companies from patenting and locking up important genetic information. The companies (including Bayer AG and Bristol-Myers Squibb) wanted the data released into the public domain to ensure that genetic information could be freely accessed and used for research. Its mission undermined the assertion that a genetic commons inevitably leads to commercial suicide and the end of research incentives.[2]

What’s most troubling about thousands of DNA sequences being owned by a handful of companies is the fact that genes are deeply interrelated. For instance, there is no single gene that causes Alzheimer’s disease, which instead results from a variety of environ-mental factors and interactions with other genes. Scientists have mapped much of the human genome, figuring out that there are roughly one hundred thousand pieces of a genetic jigsaw puzzle. But in order to effectively fight diseases with genetic technologies, researchers have to learn how each privately owned gene connects and reacts with the ones around it. Imagine trying to put together a puzzle if you had to buy a random assortment of jigsaw pieces from dozens of companies. You might get frustrated, even give up. When you have to secure multiple licenses from several companies just to begin research, it is all the more difficult for scientists to efficiently and affordably do their job.

“It’s a really big problem if you have to sign lots of agreements,” Eisenberg told New Scientist. “Licenses and material transfer agreements with companies are taking longer to negotiate, so it may take weeks or months.” Similarly, Jeffrey Kahn, director of the University of Minnesota’s Center for Bioethics, cautioned that high licensing fees can hold medical progress hostage. “If you’re a start-up company, you need to have those licenses bagged,” MediGene’s Helena Chaye tells me. “You need them in your back pocket to go and raise money or to entice investors to put more money into it because you’ve got new licensed technologies.” Not having those licenses, she says, “could definitely hinder your operations.”And if you think that many of these companies aren’t aggressively guarding their genes, just listen to Human Genome Sciences CEO William A. Haseltine, who openly stated: “Any company that wants to be in the business of using genes, proteins or antibodies as drugs has a very high probability of running afoul of our patents. From a commercial point of view, they are severely constrained — and far more than they realize.”

Geneticist John Sulston argues in his book, The Common Thread that it seems unlikely “that patent laws combined with untrammeled market forces are going to lead to a resolution that is in the best interests of further research, or of human health and well being.” Advocates of privatization argue that having a commons that anyone can freely draw from will mean the end of creativity and innovation, but the opposite is often true. The way patent law is applied in genetics can limit researchers’ choices, which means the scientific imagination becomes routinized and stifled. There’s little room for the kinds of visionary ideas and accidental discoveries that evolve into real breakthroughs. An argument for the commons — whether it’s the genetic commons or a folk-song commons — is an argument for more creative elbow room.[3] But because of our blind faith in privatization, freedom of expression® has been limited artistically, socially, and scientifically.

Seeds = Information

I live in Iowa, and I am surrounded by corn, pork, pickup trucks, and, from what I hear, meth labs. Over the past few years, I’ve been inundated by plenty of weird and wonderful stories about farming and rural living. However, one of the most unsettling, science fiction–sounding scenarios I’ve come across is the “Technology Protection System,” or “terminator technology,” as it is known in the press. This technology enables seed companies to genetically alter their patented seeds so that crops become sterile after one planting, turning off life like a light switch. It’s a way of preventing farmers from retaining seeds from the previous year’s crop and replanting them.

Saving and replanting seeds is something we humans have been doing since we stopped being nomadic creatures, but the practice is now illegal with seeds that are patented. The terminator seeds were developed by the U.S.-based Delta and Pine Land, whose president trumpeted, “We expect the new technology to have global implications.” Delta and Pine Land claimed that the terminator seed would be marketed primarily in developing countries to prevent farmers from saving, trading, and/or replanting seeds that are sold by U.S. corporations. Interestingly, the seed industry experienced many aspects of the Napster file-sharing controversy a few years before it hit the music industry.

While there are obvious differences, there are also striking similarities. MP3 music files circulate on the Internet because someone had to purchase a CD, which was then inserted into a computer and “ripped” into digital files. These files can then be exactly duplicated, and copies are made of these copies, then shared. This is also true of privately owned seeds, though the earth (rather than a computer) “reaps” this information without permission. These copied seeds can then be given to other farmers through informal trading systems, delivering them from person to person, a sort of rural peer-to-peer file-sharing network. Even though the seeds are patented, much like music is copyrighted, this can’t stop someone from creating a facsimile of someone else’s intellectual property. This is why the terminator technology was invented.

Sterile seeds may be an inconvenience for American farmers who, for various reasons — including being riddled with debt — want to continue saving seeds. But they may prove devastating for their poorer counterparts in Third World countries who rely on subsistence farming. U.S. Department of Agriculture (USDA) spokesperson Willard Phelps stated that the goal of the terminator technology is “to increase the value of proprietary seed owned by U.S. seed companies and to open new markets in second and Third World countries.” The primary creator of the terminator seed, Melvin J. Oliver, made clear his invention’s purpose to New Scientist: “Our system is a way of self-policing the unauthorized use of American technology,” he asserted, comparing it to copy-protection technologies that prevent the duplication of music. And we wonder why so much of the world hates us.

In mid-1998 Monsanto made an attempt to purchase terminator seed–patent owner Delta and Pine Land. However, this technology met with heated worldwide protests that targeted Monsanto as the next Great Satan, and in early 1999 the company stepped back in “recognition that we need some level of public acceptance to do our business.” Although Monsanto backed out of the merger, Delta and Pine Land, which still holds the terminator-seed patent with the USDA, has continued to develop the technology. Just as in the movies, the Terminator lived on. Delta and Pine Land official Harry Collins stated in January 2000, “We’ve continued right on with work on the Technology Protection System. We never really slowed down. We're on target, moving ahead to commercialize it. We never really backed off.” Since then, more terminator-technology patents have been awarded.

Four-fifths of the sixteen hundred patents issued for genetically modified crops are owned by just thirteen companies, and some of the most significant patents belong to Monsanto. The St. Louis–based operation was founded in 1901 as a chemical company, and it gained notoriety in the 1970s because it was responsible for creating Agent Orange. This chemical compound was used by the military to clear jungles in Vietnam, which led to illness and death in thousands, and the company has also been implicated in several cases of employee and residential contamination. A Monsanto production plant contaminated the Missouri town of Times Beach so much that it had to be evacuated in 1982, and in 2002 Monsanto lost a case against lawyers representing a small Alabama town that had been poisoned as well.[4]

By the mid-1990s Monsanto moved much of its chemical operations to biotechnology, and it is now a global leader in transgenic crops. The contract for Monsanto’s Roundup Ready soybeans allows the company to

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×