Павел Кузнецов
Симуляция частичной специализации
Введение
Время от времени при работе с шаблонами возникает необходимость специализировать шаблон класса по одному из аргументов. В качестве примера можно рассмотреть шаблон классов матриц, параметризованный типом элемента и размерами матрицы.
template‹class T, int Rows, int Columns›
class Matrix {
//…
};
Предположим, в процессе разработки выяснилось, что производительность программы неудовлетворительна, и узким местом является функция умножения матриц с элементами типа float, и что эту проблему можно решить путем использования intrinsic-функций процессора. При наличии соответствующей поддержки компилятора это легко можно сделать при помощи так называемой частичной специализации шаблонов классов:
template‹int Rows, int Columns›
class Matrix‹float, Rows, Columns› {
//…
};
Однако некоторые компиляторы не поддерживают частичную специализацию, и, как следствие, «не понимают» подобные конструкции. Желание получить эквивалентную функциональность при работе с такими компиляторами приводит к технике, описанной ниже.
Техника симуляции
Естественным первым шагом будет вынести различающуюся функциональность Matrix‹› в два базовых класса: Matrix_‹›, реализующий общий случай, и Matrix_float_‹› для специфики Matrix‹float,…›.
template‹class T, int Rows, int Columns›
class Matrix_ {
//…
};
template‹int Rows, int Columns› class Matrix_float_ {
//…
};
Таким образом, проблема сведется к тому, чтобы класс Matrix‹T, Rows, Columns› наследовался от Matrix_‹T, Rows, Columns› или Matrix_float_‹Rows, Columns›, в зависимости от того, является ли параметр T шаблона Matrix‹› типом float. Решение этой задачи и является главным «фокусом» данной техники.
Несмотря на отсутствие поддержки
template‹class T›
struct MatrixTraits {
template‹int Rows, int Columns›
struct Dimensions {
typedef Matrix_‹T, Rows, Columns› Base;
};
};
template‹›
struct MatrixTraits‹float› {
template‹int Rows, int Columns›
struct Dimensions {
typedef Matrix_float_‹Rows, Columns› Base;
};
};
Теперь осталось просто унаследовать Matrix‹› от соответствующего класса MatrixTraits‹›:: …::Base.
template‹class T, int Rows, int Columns›
class Matrix: public MatrixTraits‹T›::template Dimensions‹Rows, Columns›::Base {
//…
};
ПРИМЕЧАНИЕ Согласно текущей версии стандарта, использование ключевого слова template при квалификации вложенного шаблона Dimensions в данном случае обязательно, хотя некоторые компиляторы и позволяют его опускать.
Использование
Метапрограммирование и метафункции
Прежде чем перейти к изложению дальнейшего материала, полезно ввести понятия метапрограммирования и метафункции. Если внимательнее посмотреть на то, что происходит, когда компилятор встречает пример, подобный наследованию класса Matrix от MatrixTraits‹T›::…::Base, можно заметить, что фактически это является программированием компилятора. То есть, в данном случае компилятор как бы получает инструкцию: «если тип шаблона является типом float, то считать базовым классом Matrix_float_‹›, в противном случае – Matrix_‹›. Это можно рассматривать как программирование вычислений времени компиляции. Подобные техники иногда называют метапрограммированием шаблонами или просто метапрограммированием, а шаблоны, подобные MatrixTraits, – метафункциями.
Частичная специализация по виду аргумента шаблона
Одним из аспектов частичной специализации является возможность специализировать шаблон по виду аргумента, например, предоставить общую для всех указателей специализацию шаблона:
template‹class T›
class С {