не был застенчивым ребенком и не сидел бы дома, разбирая журналы. Самым поразительным было то, что это произошло со мной в раннем возрасте, что я нашел этот журнал в вещах моего отца. Это был журнал, который большинству людей никогда бы не попался на глаза или никогда бы их не заинтересовал, потому что он предназначался для инженеров высшего ранга, работающих на правительство.

Тогда-то я и стал одержимым. Я принялся читать этот журнал и перечитывать его снова и снова, вместе с другими, которые были у отца. Я помню, как однажды наткнулся на статью о булевой алгебре. Это такая область математики, используемая в компьютерах. И я выучил теорему Де Моргана, на которой и основана вся булева алгебра. Таким образом, логика стала основой моего существования – еще тогда, в пятом классе. Я заучивал эту формулу и прикидывал, каким образом я мог бы ею воспользоваться, чтобы заменить операторы «И» и «ИЛИ» в логических уравнениях. В логике, например, вы можете поставить формальное условие – необходимо, чтобы слово начиналось с гласной буквы и заканчивалось на гласную. Формула для этого условия будет содержать оператор «И» – гласная является первой буквой в этом слове и последней буквой в этом слове. Это и есть оператор «И» в булевой алгебре. А если слово начинается с гласной, но не заканчивается ею или наоборот? Это «ИЛИ» в булевой алгебре.

В этом журнале были напечатаны схемы логических вентилей для «И» и «ИЛИ», и я перерисовывал их, запоминал, как они выглядят.

Так, например, знак полумесяца с точкой посередине означает вентиль «И». Если посередине стоит знак плюса вместо точки, тогда этот символ означает «ИЛИ». Затем я научился рисовать узел, обозначающий инвертор: это треугольник, направленный вправо, с маленьким кружком в самой вершине. Самое забавное – что и по сей день я пользуюсь теми же символами, когда проектирую электронику. А ведь все это я выучил, когда был пятиклассником и лежал дома на кровати в своей комнате, листая журналы.

Вот что удивляло меня тогда. Я думал: «При моем уровне знания математики я, пятиклассник, смог освоить математику, применявшуюся в компьютерах – теорему Де Моргана, булеву алгебру». Так что любой может изучить булеву алгебру, и для этого даже не нужно обладать углубленными познаниями в математике, которые у меня уже были в пятом классе. Я понял, что компьютеры в каком-то роде были не так уж сложно устроены. И это просто перевернуло мой мир с ног на голову. Компьютеры – в моем понимании они представлялись самой невероятной вещью в мире, самой передовой технологией, практически никому не понятной – были на самом деле достаточно просто устроены, и пятиклассник вроде меня мог в них разобраться! Мне это очень нравилось. Тогда я решил, что буду заниматься логикой и компьютерами для удовольствия. Я был не совсем уверен, что это вообще может стать моей основной профессией.

Утверждать, что ты собираешься играть с компьютерами, в те дни было, мягко говоря, необычно. Это все равно, что сказать, что ты собрался стать астронавтом. Шел 1961 год, тогда еще даже не было настоящих космонавтов! Шанс стать одним из них был очень призрачным. Но у меня на этот счет было свое мнение. Я уже понимал, что мне это будет даваться достаточно легко. Так в итоге и случилось.

Таким образом, компьютеры стали главным в моей жизни. Компьютерная логика стала тем, в чем я, наверно, впоследствии превзошел любого из ныне живущих. (Конечно, наверняка этого знать я не могу. Возможно, в каких-то колледжах есть люди, способные применять теорему Де Моргана не хуже меня.) Но до того, как я начал разрабатывать первый компьютер Apple, логика была моей жизнью. Я понимаю, что это звучит невероятно, но я просто обожал логику и все, что с ней связано, – даже тогда, давным-давно.

* * *

Когда я учился в средней школе, а потом и в высшей, научные проекты считались престижными – тогда тебя не считали чудаком, если ты этим занимался, и награды за научные проекты были настоящим праздником. Я всегда праздновал, когда их получал. Несколькими проектами, представленными мной на научных ярмарках, я до сих пор очень горжусь. Это было, когда я учился с третьего по шестой и в восьмом классе. (По какой-то причине я не участвовал в этих ярмарках в седьмом классе.) Все эти проекты давались нелегко, они были даже сложнее, чем проекты некоторых старшеклассников, и тогда я это прекрасно понимал. Некоторые мои проекты буквально ошеломили других детей и членов комиссии. Я был в каком-то смысле героем, и я выигрывал все награды, включая самые престижные грамоты научной ярмарки Западного побережья.

Участие в таких научных ярмарках помогало мне понять, кем я был и кем могу стать в этом мире, если придумаю хороший проект. Учителя сразу видели во мне особенного ученика; некоторые их них даже стали звать меня Всезнайкой, потому что я постоянно выступал со своими проектами на таких ярмарках. Вероятно, в результате этого к шестому классу я уже собирал электротехнические проекты, которые были не по силам даже старшеклассникам. Признание и достижения двигали меня к тому, чтобы работать в этом направлении и дальше. А потом эта работа заняла главное место в моей жизни.

* * *

Впервые я участвовал в научном конкурсе в третьем классе и выиграл его. Но тот мой проект был на самом деле достаточно простым. Я просто собрал одну хитрую штуковину, в которой использовался источник света, пара батареек и несколько проводов – все это было собрано на деревянной доске. Это была рабочая модель фонарика! Многих людей она сразила наповал, и я занял первое место. Пустяк, конечно: сам-то я знал, что ничего удивительно там не было, и прекрасно понимал, что в следующий раз я могу выступить еще лучше.

Только в четвертом классе я впервые сделал проект, который позволил мне приобрести навыки, пригодившиеся мне впоследствии – физика, электроника и подбор материалов. Это был эксперимент, в ходе которого я хотел выяснить, что будет, если смочить два углеродных стержня любой жидкостью на выбор. Стержни были подсоединены проводами к лампочке и розетке. Жидкость сама становилась своего рода «проводом», когда углеродные стержни в нее окунались. Она могла быть хорошим «проводом» или плохим – в смысле, могла проводить электричество хорошо или плохо. В зависимости от того, как светилась лампочка – ярко или тускло, – можно было видеть, насколько хорошо эта жидкость способна проводить электричество.

Я попробовал все жидкости, которые мог достать: воду, кока-колу, ледяной чай, сок, пиво. Какая же жидкость проводит электричество лучше всего? (Оказалось – соленая вода.) Это чрезвычайно важно знать, если вам необходимо овладеть, скажем, основами гидроэлектрической механики или принципами работы обычных батареек.

* * *

А вот следующий эксперимент был и правда масштабным. Тогда я построил гигантскую электрическую модель, изображающую каждый из девяноста двух атомов в таблице Менделеева и особенности их электронного строения.

На случай, если вы забыли: орбиты электронов в центре атома вращаются примерно так же, как планеты вокруг Солнца. У планеты Земля, например, одна орбита, у Нептуна – другая.

Я задался целью создать такую модель, которая при одном включении переключателя демонстрировала бы, сколько электронных орбит было у каждого атома в таблице Менделеева и на какой орбите относительно ядра они должны находиться. Так, когда я щелкал переключателем для водорода, зажигалась лампочка в самой близкой к центру дырке, обозначавшей ядро.

Для того чтобы изготовить эту модель, мне пришлось просверлить девяносто две дырки в большом листе алюминия. Отверстия располагались сверху вниз; в каждом из них был переключатель, соответствующий одному из элементов: один переключатель для водорода, один для золота, один для гелия и так далее.

Затем я изобразил очень большой рисунок, похожий на мишень: концентрические кольца разных цветов с очень маленькой меткой-яблочком в середине, которое изображало центр атома, то есть ядро. И мне пришлось просверлить девяносто два отверстия, – они отображали электроны, из которых состоял атом.

И вот что в итоге получилось. Допустим, вы хотите знать, как выглядят электроны в составе любого из девяносто двух элементов в периодической таблице. Водзьмем, кислород. Я включал переключатель кислорода, зажигались восемь лампочек, представляющих восемь электронов, которые вращаются вокруг ядра в атоме кислорода – каждый на своей орбите.

Я точно знал, как выглядят эти орбиты, поскольку в качестве справочника пользовался большой книгой, которая называлась «Руководство по химии и физике».

Этот проект был очень сложным, ведь мне пришлось разбираться с девяносто двумя комплектами переключателей для девяноста двух периодических элементов.

В результате это обернулось такой морокой, что пришлось воспользоваться теми знаниями о диодах,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату