• системы, работающие на уровне ядра (Kernel Level, или KLT);
• системы, функционирующие на пользовательском уровне (User Level).
Первый известный руткит для системы Windows, NT Rootkit, был написан в 1999 году экспертом в области безопасности Грегом Хоглундом в виде драйвера уровня ядра. Он скрывал все файлы и процессы, в имени которых встречалось сочетание _root, перехватывал информацию, набираемую на клавиатуре, и использовал другие способы маскировки.
Самым известным на сегодня руткитом является Hacker Defender. Эта программа работает в режиме пользователя и маскируется за счет перехвата некоторых API. Hacker Defender может обрабатывать сетевой трафик до того, как он будет передан приложению, то есть любая программа, работающая в сети, может быть использована для взаимодействия со взломщиком. Руткит умеет скрывать файлы и процессы, записи в реестре и открытые порты и может неправильно показывать количество свободного места на диске. Он прописывается в автозагрузку, оставляя для себя черный вход, и прослушивает все открытые и разрешенные брандмауэром порты на предмет 256-битного ключа, который укажет, какой порт использовать для управления. Hacker Defender перехватывает функции запуска новых процессов, что позволяет ему заражать все программы, запускаемые пользователем. Он полиморфен: для шифрования исполняемых файлов руткита обычно используется утилита Morphine.
Примечание
Все современные версии руткитов могут прятать от пользователя файлы, папки и параметры реестра, скрывать программы, системные службы, драйверы и сетевые соединения.
Одним из наиболее опасных руткитов является FU, выполненный частично как приложение, а частично как драйвер. Он не занимается перехватами, а манипулирует объектами ядра системы, поэтому найти такого вредителя очень сложно.
Если вы обнаружили руткит, это еще не значит, что вы сможете избавиться от него. Для защиты от уничтожения пользователем или антивирусом в руткитах применяется несколько технологий, которые уже встречаются и в зловредных программах других типов. Например, запускаются два процесса, контролирующих друг друга. Если один из них прекращает работу, второй восстанавливает его. Применяется также похожий метод, использующий потоки: удаленный файл, параметр реестра или уничтоженный процесс через некоторое время восстанавливаются.
Популярен способ блокировки доступа к файлу: файл открывается в режиме монопольного доступа или блокируется с помощью специальной функции; удалить такой файл стандартными способами невозможно. Если попытаться воспользоваться отложенным удалением (во время следующей загрузки), например с помощью программы типа MoveOnBoot, то, скорее всего, запись об этой операции будет через некоторое время удалена либо файл будет переименован.
Любопытный способ защиты использует червь Feebs. Для борьбы с антивирусами, антируткитами и другими утилитами, пытающимися уничтожить его, он выставляет приманку – замаскированный процесс, не видимый на вкладке Процессы в окне Диспетчера задач. Любое приложение, которое попытается обратиться к этому процессу, уничтожается. Программа может устанавливаться как дополнительный модуль к браузеру Internet Explorer, изменяющий его функциональность. Стандартные средства контроля автозапуска типа msconfig не видят эти параметры, а применение дополнительных утилит для изучения системы требует от пользователя определенной квалификации, поэтому единственный действительно надежный способ уничтожить такую программу – отформатировать жесткий диск и заново установить операционную систему.
К сожалению, существующие сегодня специализированные программы, предназначенные для обнаружения руткитов, и традиционные антивирусы не дают стопроцентной гарантии безопасности. Обладая исходным кодом этих программ, можно создать любые модификации руткитов или включить часть кода в любую шпионскую программу. Главное умение руткитов – не прочно закрепиться в системе, а проникнуть в нее, поэтому основным правилом для вас должны стать максимальная защита и осторожность.
1.7. Уязвимости программ и хакерские технологии
Если после всего рассказанного в предыдущих главах у вас еще не пропало желание работать с компьютером, вам будет интересно узнать, как различные зловредные программы могут попасть в систему. Эта информация, возможно, убережет вас от простейших ошибок и позволит трезво оценить ситуацию.
Можно выделить три причины проникновения вирусов:
• ошибки при разработке программного обеспечения;
• ошибки в настройках;
• воздействие на пользователя (социальный инжиниринг).
Описать все варианты невозможно: технологии не стоят на месте и злоумышленники постоянно придумывают новые методы. Остановимся на основных моментах. Если в последних двух случаях от действий пользователя что-то зависит, то в первом он может повлиять на ход событий только частично. Ошибки в программном обеспечении часто способны свести на нет все попытки пользователя защитить систему от проникновения вредоносных приложений.
Переполнение буфера
Некоторые вирусы и атаки достигают цели без участия пользователя. Несмотря на усилия, интенсивность удаленных атак не снижается, а отражать их становится все труднее. Как это получается? Ведь чтобы программа, пусть и зловредная, что-то сделала, она должна быть кем-то или чем-то запущена. Анализ показывает, что в подавляющем большинстве атак используются ошибки переполнения буфера, и эта проблема является первостепенной.
Впервые данная уязвимость была использована в 1988 году – на ней основывались атаки червем Морриса. С тех пор количество подобных атак увеличивается с каждым годом. В настоящее время можно утверждать, что уязвимости, связанные с переполнением буфера, являются доминирующими при удаленных атаках, где обычный пользователь Сети получает частичный или полный контроль над атакуемым. Приблизительно половина вредоносных программ использует этот тип уязвимости.
В материале «Википедии» (http://ru.wikipedia.org) дано следующее определение данной уязвимости: «Переполнение буфера – это явление, возникающее, когда компьютерная программа записывает данные за пределами выделенного в памяти буфера».
В «Новом словаре хакера» Эрика С. Рэймонда сказано, что «переполнение буфера – это то, что с неизбежностью происходит при попытке засунуть в буфер больше, чем тот может переварить».
Представьте следующую ситуацию. Функция изменения пароля может воспринять пароль длиной не более 256 символов. Чаще всего никто не пользуется паролями длиннее 8–10 символов, поэтому разработчики не предусмотрели проверку строки ввода данных. При попытке ввести более 256 символов, если за данными находился адрес возврата функции, он будет перезаписан и в лучшем случае выполнение программы завершится с ошибкой. Хакеру, обнаружившему такой уязвимый участок, остается подставить в качестве адреса возврата правильный адрес, что переведет управление в любую точку программы на его выбор. В результате может быть выполнен любой произвольный код, который хакер поместил в указанную область памяти, с привилегиями, с которыми выполняется текущая программа.
Подобные ошибки в программном обеспечении находят чуть ли не ежедневно, но не всегда и не сразу устраняют. Для примера можно просмотреть статистику на специализированных сайтах. Согласно данным Secunia (http://secunia.com) в Microsoft Windows XP Professional не устранено 30 из 201 уязвимостей, обнаруженных с 2003 по начало 2008 года, хотя имеющих статус highly critical (предельно опасный), которые позволяют удаленно выполнить код (то есть фактически получить доступ к системе), в этом списке уже нет. В среднем обнаруживается три-четыре уязвимости в месяц.
В Internet Explorer 7 не устранено 7 из 21 найденной уязвимости, и некоторые из них имеют статус highly critical. В среднем в месяц обнаруживается одна-две уязвимости. Если учесть все уязвимости, при которых можно удаленно выполнить код в системе, можно сделать вывод, что с этим браузером вообще опасно выходить в Интернет. Internet Explorer позволяет выполнение кода при обработке HTML Help ActiveX, файлов HTA, SWF, ZIP, BMP и JPEG, архивов FTP, Cookies, тега IFRAME и всплывающих окон, то есть для проникновения в систему троянца достаточно зайти на сайт и просмотреть/сохранить рисунки или архив