неизбежностью. Поэтому, рассмотрев первый случай, мы можем сделать вывод о том, что если второе суждение ложно, то ложна и вся импликация.

Все рассмотренные выше примеры конъюнкции, дизъюнкции, импликации состояли из двух переменных. Однако это не всегда бывает так. Возможно наличие трех и более переменных. Рассматривая сложные суждения на предмет истинности, мы получаем буквенные формулы. Последние могут характеризоваться как истинностью, так и ложностью. В связи с этим тождественно-истинной называется формула, которая истинна при любых комбинациях своих переменных. Наименование тождественно-ложной имеет формула, которая принимает только ложное значение (значение «ложь»). Последним видом таких формул является выполнимая формула. В зависимости от комбинаций переменных, входящих в нее, она может принимать как значение «истина», так и значение «ложь».

2. Выражение высказываний

Выражение высказываний происходит при помощи символов – переменных и знаков, обозначающих логические термины. Других символов для этой цели нет. Переменные высказывания выражаются в виде букв латинского алфавита (a, b, c, d и т. д.). Такие буквы называют переменными высказываниями, а также пропозициональными переменными. Говоря простым языком, под этой группой символов понимаются простые суждения, составляющие высказывание. Выражаются данные суждения в виде повествовательных предложений. Другая группа символов, использующаяся для выражения высказываний в виде формул, это знаки. Они обозначают логические термины, такие как конъюнкция и дизъюнкция, которая может быть строгой и нестрогой, отрицание, эквиваленция и импликация. Конъюнкция отображается в виде галочки, направленной вверх (^) дизъюнкция как галочка, направленная вниз (V). При строгой дизъюнкции выше галочки ставится точка. Импликация имеет знак «-›», отрицание (-), эквиваленция (=).

Последним видом символов, при помощи которых выражаются высказывания, являются круглые скобки.

Символы, обозначающие логические термины, типы связки, характеризуются разной силой. Так, связка ^ считается самой сильной, т. е. она связывает сильнее всех остальных. Связка V сильнее, чем – , что важно только в некоторых случаях. Так, определение силы связок становится немаловажным в случае записи формул без использования скобок. Если мы имеем высказывание, выраженное формулой (a^b)Vc, можно не писать скобки, а прямо указывать, что a^bVc. То же правило действует и при использовании символа – ›. Однако данное правило справедливо не во всех случаях. То есть во многих случаях недопустимо опускать скобки. Например, когда конъюнктивная связка понятия а осуществляется с двумя другими понятиями, связанными отношением импликации и отделенными круглыми скобками, опускать последние недопустимо (a^(bc)). Это очевидно, так как в противном случае пришлось бы вначале осуществлять связку конъюнкции и только затем импликацию. Из школьного курса математики мы знаем, что опускать скобки в подобном случае нельзя. Иллюстрацией подобной ситуации может быть следующий пример: 2 X (2 + 3) = 10 и 2 X 2 + 3 = 7. Результат очевиден.

В связи со сказанным выше можно отметить, что далеко не каждое символьное выражение высказываний является формулой. Для этого необходимо наличие определенных признаков. Например, формула должна быть построена правильно. Примерами такого построения могут быть: (a^b), (aVb), (ab), (a = b). Это построение отмечается как ППФ, т. е. правильно построенная формула. Примерами неправильно построенных формул могут быть: a^b, aVb, Vb, ab, (a^b) и др. В первых трех случаях неправильность формулы заключается в том, что понятия, объединенные связками, должны быть заключены в скобки. Последняя формула имеет незакрытую скобку, третий же пример характеризуется тем, что одно простое понятие не объединено с другим, несмотря на то что имеется символ дизъюнкции.

В своей повседневной жизни мы часто, иногда не замечая этого, пользуемся не только простыми, но и сложными суждениями. Такие суждения, как уже было сказано выше, образуются из двух или нескольких простых суждений при помощи логических связок, которые носят название дизъюнкции, конъюнкции, импликации и отрицания, а также эквиваленции. Данные связки выражаются при помощи знаков: ^ для конъюнкции, V для дизъюнкции, – > для импликации. Знаком = отображают эквивалентность, а знак a означает отрицание. Есть два варианта отображения дизъюнкции. Первый – это простая галочка, направленная вниз – для простой дизъюнкции. При сложной используется такая же галочка, но с точкой сверху. Графическое изображение формул сложных суждений очень важно, так как позволяет более ясно понять их структуру, природу и смысл.

Логические связки объединяют простые суждения, которые по сути являются повествовательными предложениями. И тут вариантов достаточно много. Предложения могут состоять из существительных и прилагательных, из глаголов, причастий и т. д. Некоторые предложения представляют собой простые суждения, другие – сложные. Сложные суждения или высказывания характеризуются тем, что могут быть разбиты на два простых, объединенных логической постоянной. Однако это возможно не со всеми сложными предложениями. Когда в результате расчленения высказывание изменяет свой смысл, такая операция недопустима. Например, когда мы говорим «Район был старый, и дома в нем давно одряхлели», мы имеем в виду конъюнкцию, где одна сторона, «район был старый», объединена союзом «и» со второй частью – «дома в нем давно одряхлели». Смысл высказывания не изменился, несмотря на то что мы рассмотрели простые суждения в отрыве друг от друга. Однако в высказывании «На стоянке припаркована красивая и быстрая машина» попытка разделения приведет к искажению первоначально передаваемой информации. Так, рассматривая простые суждения отдельно, мы получим: «на стоянке припаркована красивая (машина)» – это первое суждение, объединенное со вторым союзом «и». Второе суждение таково: «(на стоянке припаркована) быстрая машина». В результате можно подумать, что машин было две – одна красивая, другая быстрая.

Логика – это, безусловно, самостоятельная наука, имеющая свой понятийный аппарат, инструментарий, информационную базу. Любая самостоятельная наука отделена от других и зачастую в корне отличается подходом к тому или иному предмету. Это следует иметь в виду, когда мы рассматриваем с точки зрения логики конструкции русского языка. Логика изучает такие построения более изолированно. Так, зачастую фактор времени не принимается в расчет при рассмотрении различных суждений. В русском языке фактор времени, в соответствующих случаях, учитывается всегда. Здесь следует сказать о коммутативности конъюнкции, которая неразрывно связана с указанными выше особенностями языка и логики. Коммутативность – это эквивалентность суждений (высказываний), когда (a^b) = (b^a). В языке закон коммутативности конъюнкции не действует, так как принимается во внимание фактор времени. Действительно, невозможно себе представить эквивалентность некоторых суждений, одно из которых по времени раньше другого, и наоборот. Например, не будут эквивалентны высказывания «Пошел дождь, и мы промокли» (a^b) и «Мы промокли, и пошел дождь» (b^a). Та же ситуация просматривается в высказываниях «Грянул выстрел, и зверь упал» и «Зверь упал, и грянул выстрел». Очевидно, здесь учитывается фактор времени, согласно которому одно событие или действие, отраженное в сложном суждении, предшествует другому, отчего зависит смысл всего высказывания.

Логика абстрагируется от времени и оценивает суждение только с точки зрения его правильного построения, а также истинности либо ложности. В связи с этим приведенные выше высказывания являются эквивалентными, так как в каждом отдельно взятом случае истинны обе их части.

Таким образом, конъюнктивные высказывания в логике коммутативны, использование же в суждениях союза «и» с точки зрения языка (в случае, когда учитывается фактор времени) некоммутативно.

Несмотря на то что выше были указаны предлоги, при помощи которых образуется конъюнкция, нельзя говорить о том, что при отсутствии в суждении этих предлогов конъюнкция невозможна. Это не так. Зачастую в предложениях, представляющих собой сложные суждения, в качестве связок используются разные знаки препинания. Например, это может быть запятая или тире, а иногда и точка.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату