Для оценки масштабов влияния человеческой деятельности на биосферу в 70-х годах за МБП последовала новая международная программа «Человек и биосфера». Ее результатом явились перечень и характеристика наиболее важных глобальных экологических проблем, представляющих угрозу не только для благоденствия, но и самого выживания человечества на Земле. Международное сотрудничество в области глобальных экологических исследований продолжается. Постоянно действует несколько всемирных научных программ, в том числе «Изменения климата», «Биоразнообразие» и другие. Проблема охраны природы, ее разумного и рационального использования на основе экологических законов становится одной из важнейших для человечества. Экология является основной теоретической базой для решения этой проблемы.
Основным практическим результатом развития экосистемной экологии стало ясное осознание, сколь велика зависимость человеческого общества от состояния природы на нашей планете, необходимости перестраивать экономику в соответствии с экологическими законами.
Таким образом, зародившись как «естественная история» видов, основным объектом внимания которой были отношения «организм – среда», экология прошла ряд этапов развития, сформировав представления о сложной системе связей органического мира и постепенно охватив все основные уровни организации жизни.
С экологических позиций жизнь на Земле выражена одновременно на четырех основных уровнях: организм – популяция – биоценоз – экосистема. Носители жизни – организмы разной степени сложности, от клетки бактерий до многоклеточных растений и животных, обязательно являются членами какой-либо видовой популяции. В свою очередь, жизнь любой популяции невозможна вне биоценозов, т. е. связей с популяциями других видов. Биоценоз же является составной частью экосистемы и обеспечивает свое существование потоками вещества и энергии из окружающей среды. Вся эта сложная система жизни поддерживается связями организмов.
Такое представление об организации жизни делает устаревшими недавно еще острые дебаты о том, какой из ее уровней является главным объектом в изучении экологии. Развитие науки показало, что связи организмов со средой являются механизмом устойчивости не только самих живых существ, но и всех надорганизменных систем, вне которых их жизнь невозможна. Поэтому экология по-прежнему остается «наукой о связях», как писал о ней Э. Геккель, но охватывает неизмеримо большее поле наших знаний о структуре и функционировании живой природы, включая человеческое общество.
Вместе с развитием содержания экологии развиваются и методы исследования. Основной инструмент экологического поиска представляют методы количественного анализа. Надорганизменные объединения (популяции, сообщества, экосистемы) управляются преимущественно количественными соотношениями особей, видов, энергетических потоков. Количественные изменения в структуре популяций и экосистем могут в корне переменить способы и результаты их функционирования. Наряду с обычными в биологии методами наблюдений, полевых учетов, лабораторных и полевых экспериментов, специальных приемов упорядочения материалов и т. п. возникли и множатся способы математического анализа экологических ситуаций. В 20-х годах прошлого века американский ученый А. Лотка и итальянец В. Вольтерра положили начало математическому моделированию биотических отношений. Вначале математические формулы, призванные отразить природные связи, строились на основе немногих логических умозрительных допущений. Они плохо отражали реальную действительность, но позволяли понять некоторые принципы взаимодействия видов. Позднее развилось так называемое имитационное моделирование, при котором в модель закладываются многие реальные параметры изучаемых систем и принципы их функционирования, а затем, меняя переменные, наблюдают состояние объектов при разных условиях. Такие модели используются для прогнозирования изменений в популяциях, сообществах или экосистемах и дают хорошие результаты при достаточной полноте исходных данных. Разрабатываются и модели исследовательского характера, на которых проигрываются возможные варианты, позволяющие понять характер исследуемых зависимостей. Математическое моделирование относят к «теоретической экологии», которая сопутствует развитию науки, проверяя, развивая и детализируя выдвигаемые концепции.
В настоящее время экология представляет собой разветвленную систему наук. Центральным ее ядром является общая экология с четырьмя основными подразделениями, соответствующими изучению связей на разных уровнях организации жизни:
Существует обширная учебная и научно-популярная отечественная литература, знакомящая читателя с основными вопросами современной экологии. В последние годы появились общие сводки И. А. Шилова (1997), Н. К. Христофоровой (1999). На русский язык переведены книги Ю. Одума (1975, 1976), В. Лархера (1978), Р. Риклефса (1979), М. Бигона, Дж. Харпера, К. Таусенда (1979), Р. Уиттекера (1980), Э. Пианки (1981), Т. Миллера (1990), Б. Небела (1992), Р. Маргалефа (1992) и других авторов. Много работ посвящено прикладной экологии.
Экологическое мышление становится необходимым для решения самых насущных задач нашей жизни. В связи с этим современная экология далеко вышла за рамки чисто академической учебной дисциплины. Необходимость экологического и природоохранительного обучения и воспитания подрастающего поколения очевидна. В международной сфере работают специальные комиссии ЮНЕСКО, ЮНЕП и другие организации, задачей которых является пропаганда и внедрение экологических подходов в разные сферы практической деятельности человека. Основная цель международных усилий – предотвратить грозящий человечеству экологический кризис и, используя экологические законы, обеспечить дальнейшее развитие и благополучие общества.
Глава 2. ОРГАНИЗМ И СРЕДА. ОБЩИЕ ЗАКОНОМЕРНОСТИ
2.1. Экологические факторы
Отдельные свойства или элементы среды, воздействующие на организмы, называются