этом сценарии PVM-задачи ло г ически связаны с функцией funcB (), и поэтому здесь именно функция funcB () порождает PVM-задачи. Функциям main( ) и funcA( ) нет необходимости знать что-либо о PVM-задачах, поэтому им и не нужно иметь соответствую щ ий PVM-код. Вариант 3 (см. рис. 6.4) представл я ет сценарий, в котором функции main () и дру г им функциям в про г рамме прису щ естественный параллелизм. В этом случае роль «дру г их» функций и г рает функция funcA (). PVM-задачи, порождаемые функциями main () и funcA (), выполняют различный код. Несмотря на то что задачи, порожденные функцией main (), выпол н яют идентичный код, и задачи, порожденные функцией funcA (), выполняют идентичный код, эти два набора задач совершенно различны. Этот вариант иллюстрирует возможность C++-про г раммы использовать коллекции задач для о д новременно г о решения различных проблем. Ве д ь не су щ ествует причины, по которой на про г рамму бы нала г алось о г раничение решать в любой момент времени только о д ну проблему. Вариант 4 (см. рис. 6 .4) пре д ставляет случай, ко гд а параллелизм заключен внутри объекта, поэтому порождение PVM-задач реализует один из методов это г о объекта. Этот вариант показывает, что при необхо д имости параллелизм может исходить из класса, а не из «свободной» функции.
Как и в дру г их вариантах, все PVM-задачи, порожден н ые в варианте 4, выполняют одинаковый набор инструкций, но с различными данны м и. Этот SPMD -м етод (Single Program, Multiple-Data — одна програ м ма, множество потоков данных) часто используется для реализации параллельного решения проблем некоторого типа. И то, что язык С++ обладает по д держкой объектов и средств обоб щ енного программирования на основе шаблонов, делает его основным инстру м енто м при решении подобных задач. Объекты и шаблоны позволяют С++-программисту представлять обоб щ енные игибкие решения для различных проблем с помо щ ью одной-единственной программной единицы. Наличие единой программной единицы прекрасно вписывается в модель параллелиз м а SPMD. Понятие класса расширяет модель SPMD, позволяя решать целый класс пробле м. Шаблоны дают воз м ожность решать определенный класс проблем для практически любого типа данных. Поэтому, хотя все задачи в модели SPMD выполняют один и тот же код (програ мм ную единицу), он м ожет быть предназначен для любого объекта или л юбого из его пото м ков и рассчитан на раз л ичные типы данных (азначит, и на различные объекты!). Напри м ер, в листингеб.З используется четыре PVM-задачи для генерирования четырех множеств, в каждом из которых имеется C(n,r) элементов: C(24,9), C(24,12), C(7,4) и C(7,3). В частности, влистинге 6.3 перечисляются возможные сочетания из 24 цветов, взятые по 9 и по 12. Здесь также перечисляются возможные сочетания из 7 чисел с плаваю щ ей точкой, взятые по 4 и по 3. Пояснения пообозначению C(n,r) приведены в разделе $ 6.1 («Обозначение сочетаний»).
// Листинг б.З. Создание сочетаний из заданных множеств
int main(int argc,char *argv[]) {
int RetCode,TaskId[4];
RetCode = pvm_spawn («pvm_generic_combination11, NULL, 0, '', 4,TaskId);
if(RetCode == 4) {
colorCombinations (TaskId[0] , 9) ; colorCombinations(TaskId[l] ,12) ; numericCombinations(TaskId [2],4); numericCombinations(TaskId[3],3); saveResult(TaskId[0]); saveResult(TaskId[l]); saveResult(TaskId[2]); saveResult(TaskId[3]); pvm_exit() ;
}
else{
cerr « «Ошибка при порождении сыновнего процесса.»
« endl; pvm_exit() ;
}
return(0);
}
В листинге 6.3 обратите внимание на порождение четырех PVM-задач: pvm_spawn («pvm_generic_combination» ,NULL, 0, н » ,4,TaskId) ;
Каждая порожденнал задача должна выполнять програ м му с именем pvm _generic_combination. Аргу м ент NULL в вызове функции pvm_spawn() означает, что через параметр argv[] не передаются никакие опции. Значение 0 в вызове функции pvm_spawn () свидетельствует, что нас не беспокоит, на каком ко м пьютере будет выполняться наша задача. Аргу м ент TaskId представляет м ассив, предназначенный для хранения четырех целочисленных значений, который при условии успешного выполнения функции pvm_spawn () будет содержать идентификаторы каждой порожденной PVM-задачи. В листингеб.З обратите также вни м ание на вызов функций colorCombinations () и numericCombinations (). Они «дают работу» PVM-задачам. Определение функции colorCombinations () представлено в листинге 6.4.
// Листинг 6.4. Определение функции colorCombinations()
void colorCombinations(int TaskId,int Choices) {
int MessageId =1; char *Buffer; int Size; int N;
string Source(«blue purple green red yellow orange
silver gray '); Source.append(«pink black white brown light_green
aqua beige cyan '); Source.append(«olive azure magenta plum orchid violet
maroon lavender»); Source. append ('
**) ;
Buffer = new char[(Source.size() + 100)]; strcpy(Buffer,Source.c_str()); N = pvm_initsend (PvmDataDefault); pvm_pkint(&Choices,1,1); pvm_send(TaskId,MessageId); N = pvm_initsend (PvmDataDefault); pvm_pkbyte(Buffer,strlen(Buffer),1); pvm_send(TaskId,MessageId); delete Buffer;
}
В листингеб.З от м етьте два обращения к функции colorCombinations (). Каждое из них велит PVM-задаче перечислить различное количество сочетаний цветов: C(24,9) и C(24,12). Первал PVM-задача д олжна сгенерировать 1 307 504 цветовых сочетаний, а вторал — 2 704 156. Эту работу выполняет програм м а, заданнал в вызове функции pvm_spawn (). Каждый цвет представляется строкой. Следовательно, програ мм а pvm_generic_combination (с по м ощью функции colorCombinations()) генерирует сочетания цветов, используя в качестве входных данных набор строк. Но когда она орулует «рука м и» функции numericCombinations (), показанной в листинге 6.5, в качестве входных данных используется набор чисел с плавающей точкой. Код листинга 6.3 также содержит два вызова функции numericCombinations (). Первый генерирует C(7,4) сочетаний, а второй — C(7,3).
// Листинг 6.5. Использование PVM-задач для генерирования // сочетаний