Даффа, Халла, Таунсенда и многих других – установило, что струнная теория является не только теорией струн.

Браны

Естественный вопрос, который мог появиться у вас в последней главе, таков: Почему струны? Почему одномерные составляющие столь особые? В примирении квантовой механики и ОТО мы нашли, что решающим является то, что струны не есть точки, что они имеют ненулевой размер. Но это требование может быть удовлетворено и двумерными составляющими в форме, подобной миниатюрным дискам или летающим тарелкам, или трехмерными каплеобразными составляющими в форме, подобной бейсбольному мячу или куску глины. Или, поскольку теория имеет такое изобилие пространственных измерений, мы можем даже представить капли с еще большим количеством размерностей. Почему эти составляющие не играют никакой роли в наших фундаментальных теориях?

В 1980х и ранних 1990х большинство струнных теоретиков имели то, что казалось убедительным ответом. Они утверждали, что имелись попытки сформулировать фундаментальную теорию материи, основанную на каплеобразных составляющих, причем среди других этим занимались такие иконы физики двадцатого столетия, как Вернер Гейзенберг и Поль Дирак. Но их труд, точно так же, как многие последующие исследования, показал, что экстремально трудно разработать теорию, основываясь на мельчайших каплях, которые удовлетворяют наиболее базовым физическим требованиям, – например, обеспечению того, что все квантовомеханические вероятности лежат между 0 и 1 (не могут иметь смысла отрицательные вероятности или вероятности больше единицы), и запрету обмена информацией быстрее света. Для точечных частиц полвека исследований, начатых в 1920е, показали, что эти условия могут быть удовлетворены (пока гравитация игнорировалась). А к 1980м более чем десятилетнее исследование Шварца, Шерка, Грина и других установило, к удивлению большинства исследователей, что условия могут также удовлетворяться для одномерных составляющих, струн (с необходимо включенной гравитацией). Но казалось невозможным перейти к фундаментальным составляющим с двумя или более пространственными измерениями. Причина, коротко говоря, в том, что число симметрий, соблюдаемых уравнениями, достигает сильного максимума для одномерных объектов (струн) и круто падает дальше. Симметрии здесь более абстрактны, чем те, что обсуждались в Главе 8 (они связаны с тем, как уравнения изменяются, если мы во время изучения движения струны или составляющей более высокой размерности будем увеличивать или уменьшать масштаб, неожиданно и произвольно меняя разрешение наших наблюдений). Эти трансформации оказываются критическими для формулирования физически осмысленного набора уравнений, и вне струн кажется, что требуемое богатство симметрий отсутствует.[1]

Таким образом, это был второй шок для большинства струнных теоретиков, когда статья Виттена и лавина последующих результатов[2] привели к осознанию, что теория струн и схема М-теории, частью которой она сегодня является, содержат иные ингредиенты, кроме струн. Анализ показал, что имеются двумерные объекты, названные достаточно естественно мембранами (другое возможное значение буквы 'М' в М-теории) или – в соответствии с систематическим наименованием их более высокоразмерных родственниц – 2-бранами. Имеются объекты с тремя пространственными измерениями, названные 3-бранами. И, хотя все более трудно визуализировать это, анализ показывает, что имеются также объекты с р пространственными измерениями, где р может быть целым числом, меньшим 10, известные – без ограничения обозначений – как р-браны. Таким образом струны являются только одним из ингредиентов в струнной теории, а не единственной составляющей.

Эти другие ингредиенты избегали ранее теоретического исследования почти по тем же причинам, как и десятое пространственное измерение: приближенные струнные уравнения оказывались слишком грубыми, чтобы обнаружить их. В теоретическом контексте, который струнные теоретики исследовали математически, оказалось, что все р-браны существенно тяжелее, чем струны. А чем более массивным что-либо является, тем больше энергии требуется, чтобы произвести его. Но ограничения приближенных струнных уравнений – ограничения, встроенные в уравнения и хорошо известные всем струнным теоретикам, – таковы, что они становятся менее и менее точными, когда описываемые сущности и процессы включают в себя все больше и больше энергии. При экстремальных энергиях, существенных для р-бран, приближенные уравнения теряют точность, чтобы выявить браны, скрывающиеся в тени, и именно поэтому десятилетия все проходили мимо их существования в математических понятиях. Но с различными переформулировками и новыми подходами, обеспечиваемыми унифицированной схемой М-теории, исследователи смогли обойти стороной некоторые из предыдущих технических преград, и тогда в полном математическом рассмотрении они нашли целое богатство высокоразмерных составляющих.[3]

Открытие того, что в струнной теории имеются другие составляющие, помимо струн, не делает недействительным или ненужным более ранние труды, как и открытие десятого пространственного измерения. Исследование показало, что если высокоразмерные браны являются намного более массивными, чем струны, – как бессознательно предполагалось в предыдущих исследованиях, – они имеют минимальное влияние на широкий диапазон теоретических вычислений. Но точно так же, как десятое пространственное измерение может не быть много меньше всех остальных, высокоразмерные браны могут не быть намного более тяжелыми. Имеется большое число обстоятельств, еще гипотетических, в которых масса высокоразмерной браны может быть на одном уровне с самой низкой массой колебательной моды струны, и в этом случае брана будет оказывать существенное влияние на итоговую физику. Например, моя собственная работа с Эндрю Строминджером и Дэвидом Моррисоном показала, что брана может оборачиваться вокруг сферической части формы Калаби-Яу, весьма похоже на то, как пластик вакуумной упаковки оборачивается вокруг грейпфрута; если эта часть пространства должна сжиматься, обернутая брана также будет сжиматься, вызывая снижение ее массы. Это снижение массы, как мы смогли показать, позволяет части пространства полностью сколлапсировать и открыть дыру – само пространство может рваться на части – в то время как обернутая брана обеспечивает, что при этом не будет катастрофических физических последствий. Я обсуждал эту разработку детально в Элегантной Вселенной и коротко вернусь к ней, когда мы будем обсуждать путешествия во времени в Главе 15, так что я не хочу заниматься дальнейшими деталями здесь. Но этот фрагмент проясняет, как высокоразмерные браны могут оказывать существенное влияние на физику теории струн.

Для нашей текущей области сосредоточения, однако, имеется другой глубокий способ, которым браны влияют на вид вселенной в соответствии с теорией струн/М-теорией. Огромное протяжение космоса – полнота пространства-времени, о котором мы осведомлены, – само может быть ничем иным, как гигантской браной. Наш мир может быть миром на бране.

Миры на бране

Проверка теории струн является проблематичной, поскольку струны ультрамалы. Но вспомним физику, которая определяет размер струны. Частица-переносчик гравитации – гравитон – находится среди колебательных мод струны с низшей энергией, и величина гравитационной силы, ей соответствующая, пропорциональна длине струны. Поскольку гравитация настолько слабая сила, длина струны должна быть мельчайшей; расчеты показывают, что она должна быть в пределах ста длин Планка или около того, чтобы гравитонная мода колебаний струны соответствовала гравитационной силе наблюдаемой величины.

Давая это объяснение, мы видим, что струны с высокой энергией не ограничиваются требованием малости, поскольку больше нет прямой связи с гравитоном (гравитон является модой колебаний низшей энергии, нулевой массы). Фактически, чем больше и больше энергии закачивается в струну, на первых порах она будет колебаться более и более неистово. Но после определенной точки добавочная энергия будет иметь иной эффект: она будет заставлять длину струны увеличиваться, и нет предела, до какой длины она может вырасти. Закачав в струну достаточно энергии, вы могли бы даже вырастить ее до макроскопического размера. С сегодняшней технологией мы никак не можем приблизиться к достижению этого, но возможно, что в обжигающе горячем, экстремально энергичном состоянии после Большого взрыва длинные струны производились. Если некоторые умудрились уцелеть до наших дней, они могли бы очень хорошо растянуться и быть явно видимыми через небо. Хотя вероятность этого невелика, возможно даже, что такие длинные струны могли бы остаться мельчайшими, но оставить детектируемый отпечаток на данных, которые мы получаем из пространства, возможно позволив теории струн однажды подтвердиться путем астрономических наблюдений.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату