отметку на дороге (положение) в то время, как он проезжает 90 миль в час (скорость), одновременно определяя эти два физических свойства. В действительности квантовая механика говорит, что такое определение не имеет точного смысла, поскольку вы никогда не можете одновременно измерить определенное положение и определенную скорость. Смысл, который мы придаем таким некорректным описаниям физического мира, заключается в том, что на повседневном уровне величина неопределенности ничтожна и всегда может быть проигнорирована. Вы видите, что принцип Гейзенберга не просто декларирует неопределенность, он также устанавливает – с полной ясностью – минимальную величину неопределенности в каждой ситуации. Если вы примените его формулу к скорости вашего автомобиля в тот момент, когда он пересекает контрольную отметку на дороге, положение которой известно с точностью до сантиметра, то неопределенность в скорости окажется в пределах миллиардной от миллиардной от миллиардной от миллиардной доли от мили в час. Действия финишной команды будут полностью соответствовать законам квантовой физики, если она объявит, что ваша скорость была между 89,999999999999999999999999999999999999 и 90,000000000000000000000000000000000001 миль в час, когда вы промчались мимо контрольной отметки; настолько точно, насколько это возможно в рамках принципа неопределенности. Но если вы замените ваш массивный автомобиль на утонченный электрон, чье положение вы знаете с точностью до одной миллиардной метра, то неопределенность в его скорости составит чудовищную величину 100 000 миль в час. Неопределенность всегда присутствует, но становится существенной только на микроскопических масштабах.
Объяснение неопределенности как проявления неизбежного возмущения, возникающего из-за процесса измерения, обеспечивает физиков полезным интуитивным руководством, а также мощной объясняющей схемой в определенных конкретных ситуациях. Однако, оно может также ввести в заблуждение. Оно может дать впечатление, что неопределенность возникает только когда мы, нагромождая эксперименты, вмешиваемся в вещи. Это не верно. Неопределенность строится из волновой природы квантовой механики и существует независимо от того, проводим мы или не проводим грубые измерения. Как пример, посмотрим на очень простую вероятностную волну частицы, аналог мягко перекатывающейся океанской волны, показанную на Рис. 4.6. Поскольку все гребни однородно движутся направо, вы можете считать, что эта волна описывает частицу, движущуюся со скоростью гребней волн; эксперимент подтверждает это предположение. Но где частица находится? Поскольку волна однородно распределена по пространству, для нас нет способа определить, что электрон находится здесь или там. После измерения он безусловно будет найден где-нибудь. Итак, пока мы точно знаем, как быстро движется частица, имеется гигантская неопределенность в ее положении. И, как вы видите, это заключение не зависит от нашего возмущения, действующего на частицу. Мы ее даже не касались. Вместо этого, неопределенность зависит от базового свойства волн: они могут быть распределенными в пространстве.
Хотя детали могут различаться, аналогичные объяснения применимы ко всем другим формам волн, так что общий урок понятен. В квантовой механике неопределенность просто есть.
Эйнштейн, неопределенность и вопросы реальности
Важный вопрос, который уже мог прийти вам на ум, является ли принцип неопределенности утверждением о том, что мы знаем о реальности, или это утверждение о самой реальности. Имеют ли объекты, составляющие вселенную, положение и скорость подобно обычным классическим объектам, которые мы представляем, – летящему бейсбольному мячу, бегуну на дорожке, медленному восходу Солнца, отслеживающему его путь через небо, – хотя квантовая неопределенность говорит нам, что эти свойства реальности всегда находятся вне нашей способности знать их одновременно, даже в принципе? Или квантовая неопределенность полностью разрушает классический шаблон, говоря нам, что список характерных признаков, которые наша классическая интуиция приписывает реальности, список, возглавляемый положениями и скоростями тел, составляющих мир, вводит в заблуждение? Говорит ли квантовая неопределенность нам, что в любой выбранный момент частицы просто не имеют определенного положения и определенной скорости?
Для Бора эта проблема была на одном уровне с мировоззрением. Физика имеет дело только с вещами, которые мы можем измерить. С точки зрения физики это и есть реальность. Пытаться использовать физику для анализа 'более глубокой' реальности, находящейся за пределами того, то мы можем узнать путем измерений, похоже на попытку использовать физику для анализа хлопка одной ладонью. Но в 1935 году Эйнштейн вместе с двумя коллегами, Борисом Подольским и Натаном Розеном, представил эту проблему таким убедительным и хитрым образом, что началось нечто, подобное хлопку одной ладонью, отозвавшемуся через пятьдесят лет в виде грозового раската, который провозгласил намного более мощную атаку на наше представление о реальности, чем даже Эйнштейн когда-либо имел в виду.
Целью статьи Эйнштейна-Подольского-Розена было показать, что квантовая механика, неоспоримо успешная в предсказаниях и объяснениях данных, не может быть последним словом в объяснении физики микромира. Их стратегия была проста и основывалась на простой постановке вопроса: они хотели показать, что каждая частица обладает определенным положением и определенной скоростью в любой данный момент времени, а отсюда они хотели обосновать заключение, что принцип неопределенности выражает фундаментальное ограничение на сам квантовомеханический подход. Если каждая частица имеет положение и скорость, но квантовая механика не может работать с этими свойствами реальности, тогда квантовая механика обеспечивает только частичное описание вселенной. Квантовая механика, хотели показать они, следовательно, является неполной теорией физической реальности и, вероятно, просто очередным этапом на пути к более глубокой схеме, которая, как ожидается, будет открыта. На самом деле, как мы увидим, они заложили основы для демонстрации кое-чего еще более потрясающего: нелокальности квантового мира.
Работа Эйнштейна, Подольского и Розена (ЭПР) была частично инспирирована грубым объяснением принципа неопределенности, принадлежащим самому Гейзенбергу: когда вы измеряете, где находится что- либо, вы с необходимостью возмущаете его, при этом портите любую попытку одновременного определения его скорости. Хотя, как мы видели, квантовая неопределенность есть более общее понятие, чем указание на 'возмущающую' трактовку, Эйнштейн, Подольский и Розен убедительно и хитроумно показали, что возникает в конце концов, если неаккуратно обращаться с любым источником неопределенности. Что если, предположили они, вы можете провести непрямое измерение как положения, так и скорости частицы способом, который никогда не приведет вас в контакт с самой частицей? Например, используя классическую аналогию, представим, что Род и Тодд Фландерс приняли решение предпринять важное одинокое путешествие по заново созданной Спрингфилдовской ядерной пустыне. Они стартовали спина к спине из центра пустыни и договорились шагать прямо в противоположных направлениях с точно одинаковой, оговоренной заранее скоростью. Представим далее, что девятью часами позже их отец, Нэд, возвращаясь после своего восхождения на Пик Спрингфилда, и поймав глазами Рода, побежал к нему и безнадежно спросил о местонахождении Тодда. К этому времени Тодд ушел далеко, но расспросив Рода и наблюдая его, Нэд, тем не менее, смог узнать многое о Тодде. Если Род находится точно в 45 милях к востоку от стартовой точки, Тодд должен находиться точно в 45 милях к западу от нее. Если Род шагает со скоростью точно 5 миль в час на восток, Тодд должен шагать точно со скоростью 5 миль в час на запад. Так что, хотя Тодд удален примерно на 90 миль, Нэд может определить его положение и скорость, хотя и косвенно.
Эйнштейн и его коллеги применили похожую стратегию к квантовой сфере. Имеются хорошо известные физические процессы, при которых две частицы испускаются из одного места со свойствами, которые соотносятся примерно таким же образом, как движение Рода и Тодда. Например, если начальная единая частица распадается на две частицы одинаковой массы, которые разлетаются 'спина к спине' (подобно тому как взрыв выбрасывает два осколка в противоположных направлениях), будет нечто, что является общим в области физики субатомных частиц, а именно, скорости двух составляющих будут равны и противоположны. Более того, положения двух составляющих частиц будут также тесно связаны и, для