Practical Advice for the Practicing Embedded Developer
This book contains my view of what an embedded engineer needs to know to get up to speed fast in an embedded Linux environment. Instead of focusing on Linux kernel internals, the kernel chapter in this book focuses on the project nature of the kernel and leaves the internals to the other excellent texts on the subject. You will learn the organization and layout of the kernel source tree. You will discover the binary components that make up a kernel image, and how they are loaded and what purpose they serve on an embedded system. One of my favorite figures in the book is Figure 5-1, which schematically illustrates the build process of a composite kernel image.
In the pages of this book, you will learn how the build system works and how to incorporate into the Linux kernel your own custom changes that are required for your own projects. You will discover the mechanism used to drive the configuration of different architectures and features within the Linux kernel source tree and, more important, how to modify this system to customize it to your own requirements. We also cover in detail the kernel command-line mechanism. You will learn how it works, how to configure the kernel's runtime behavior for your requirements, and how to extend this functionality to your own project. You will learn how to navigate the kernel source code and how to configure the kernel for specific tasks related to an embedded system. You will learn many useful tips and tricks for your embedded project, from bootloaders, system initialization, file systems, and Flash memory to advanced kernel- and application-debugging techniques.
Intended Audience
This book is intended for programmers with a working knowledge of programming in C. I assume that you have a rudimentary understanding of local area networks and the Internet. You should understand and recognize an IP address and how it is used on a simple local area network. I also assume that you have an understanding of hexadecimal and octal numbering systems, and their common usage in a text such as this.
Several advanced concepts related to C compiling and linking are explored, so you will benefit from having at least a cursory understanding of the role of the linker in ordinary C programming. Knowledge of the GNU make operation and semantics will also prove beneficial.
What This Book Is Not
This book is not a detailed hardware tutorial. One of the difficulties the embedded developer faces is the huge variety of hardware devices in use today. The user manual for a modern 32-bit processor with some integrated peripherals can easily exceed 1,000 pages. There are no shortcuts. If you need to understand a hardware device from a programmer's point of view, you will need to spend plenty of hours in your favorite reading chair with hardware data sheets and reference guides, and many more hours writing and testing code for these hardware devices!
This is also not a book about the Linux kernel or kernel internals. In this book, you won't learn about the intricacies of the Memory Management Unit (MMU) used to implement Linux's virtual memory-management policies and procedures; there are already several good books on this subject. You are encouraged to take advantage of the 'Suggestions for Additional Reading' section found at the end of every chapter.
Conventions Used
Filenames and code statements are presented in Courier. Commands issued by the reader are indicated in bold Courier. New terms or important concepts are presented in
When you see a pathname preceded with three dots, this references a well-known but unspecified top-level directory. The top-level directory is context dependent but almost universally refers to a top-level Linux source directory. For example, .../arch/ppc/kernel/setup.c refers to the setup.c file located in the architecture branch of a Linux source tree. The actual path might be something like ~/sandbox/linux.2.6.14/arch/ppc/kernel/setup.c.
Organization of the Book
Chapter 1, 'Introduction,' provides a brief look at the factors driving the rapid adoption of Linux in the embedded environment. Several important standards and organizations relevant to embedded Linux are introduced.
Chapter 2, 'Your First Embedded Experience,' introduces the reader to many concepts related to embedded Linux upon which we build in later chapters.
In Chapter 3, 'Processor Basics,' we present a high-level look at the more popular processors and platforms that are being used to build embedded Linux systems. We examine selected products from many of the major processor manufacturers. All of the major architecture families are represented.
Chapter 4, 'The Linux Kernel: A Different Perspective,' examines the Linux kernel from a slightly different perspective. Instead of kernel theory or internals, we look at its structure, layout, and build construction so you can begin to learn your way around this large software project and, more important, learn where your own customization efforts must be focused. This includes detailed coverage of the kernel build system.
Chapter 5, 'Kernel Initialization,' details the Linux kernel's initialization process. You will learn how the architecture- and bootloader-specific image components are concatenated to the image of the kernel proper for downloading to Flash and booting by an embedded bootloader. The knowledge gained here will help you customize the Linux kernel to your own embedded application requirements.
Chapter 6, 'System Initialization,' continues the detailed examination of the initialization process. When the Linux kernel has completed its own initialization, application programs continue the initialization process in a predetermined manner. Upon completing Chapter 6, you will have the necessary knowledge to customize your own userland application startup sequence.
Chapter 7, 'Bootloaders,' is dedicated to the booloader and its role in an embedded Linux system. We examine the popular open-source bootloader U-Boot and present a porting example. We briefly introduce additional bootloaders in use today so you can make an informed choice about your particular requirements.
Chapter 8, 'Device Driver Basics,' introduces the Linux device driver model and provides enough background to launch into one of the great texts on device drivers, listed as ' Suggestions for Additional Reading ' at the end of the chapter.
Chapter 9, 'File Systems,' presents the more popular file systems being used in embedded systems today. We include coverage of the JFFS2, an important embedded file system used on Flash memory devices. This chapter includes a brief introduction on building your own file system image, one of the more difficult tasks the embedded Linux developer faces.
Chapter 10, 'MTD Subsystem,' explores the Memory Technology Devices (MTD) subsystem. MTD is an extremely useful abstraction layer between the Linux file system and hardware memory devices, primarily Flash memory.
Chapter 11, 'BusyBox,' introduces BusyBox, one of the most useful utilities for building small embedded systems. We describe how to configure and build BusyBox for your particular requirements, along with detailed