selection, he wrote another book 898 pages long, attributing the origin of human races to our sexual preferences which I described in the last chapter, and entirely rejecting a role of natural selection. Despite that verbal overkill, many readers were unconvinced. To this day, Darwin's theory of sexual selection (as he called it) remains controversial. Instead, modern biologists generally invoke natural selection to explain the visible differences among human races—especially the differences in skin colour, whose relation to sun exposure seems obvious. However, biologists cannot even agree on why natural selection led to dark skin in the tropics. I shall explain why I believe natural selection to have played only a secondary role in our racial origins, and why Darwin's preference for sexual selection seems to me correct. I therefore consider visible human racial variation to be largely a byproduct of the remodelled human life-cycle that forms the subject of Part Two of this book.
Firstly, to place matters in perspective, let's realize that racial variation is not at all confined to humans. Most animal and plant species with sufficiently wide distributions, including all higher ape species except the geographically localized pgymy chimp, also vary geographically. So marked is variation in some bird species, such as North America's white-crowned sparrow and Eurasia's yellow wagtail, that experienced birdwatchers can identify an individual bird's approximate birthplace by its plumage pattern. Variation in apes encompasses many of the same characteristics that vary geographically in humans. For example, among the three recognized races of gorillas, western lowland gorillas have the smallest bodies and rather grey or brown hair, while mountain gorillas have the longest hair, and eastern lowland gorillas share black hair with mountain gorillas. Races of white-handed gibbons similarly vary in hair colour (variously black, brown, reddish, or grey), hair length, tooth size, protrusion of the jaws, and protrusion of the bony ridges over the eyes. All these traits that I have just mentioned as varying among gorilla or gibbon populations also differ among human populations. How does one decide whether recognizably distinct animal populations from different localities constitute different species, or belong instead to the same species and just constitute different races (also known as subspecies)? As explained in Chapter Two, the distinction is based on interbreeding under normal circumstances: members of the same species may interbreed normally if given the opportunity, while members of different species do not. (But closely related species that would not normally interbreed in the wild, like lions and tigers, may do so if a male of one is caged with a female of the other and given no other choice.) By this criterion, all living human populations belong to the same species, since some interbreeding has occurred whenever humans from different regions have come into contact—even people as dissimilar in appearance as African Bantus and Pygmies. With humans as with other species, populations may intergrade into each other, and it becomes arbitrary to decide which populations to group as races. By the same criterion of interbreeding, the large gibbons known as siamangs are a distinct species from the smaller gibbons, since both occur together in the wild without hybridizing. This is also the criterion for considering Neanderthals possibly as a species distinct from
Racial variation has characterized humans for at least the past several thousand years, and possibly much longer. Already around 450 BC, the Greek historian Herodotus described the Pygmies of West Africa, the black- skinned Ethiopians, and a blue-eyed red-haired tribe in Russia. Ancient paintings, mummies from Egypt and Peru, and bodies of people preserved in European peat bogs confirm that people several thousand years ago differed in their hair and facial features much as they do today. Origins of modern races can be pushed back still further, to at least ten thousand years ago, since fossil skulls of that age from various parts of the world differ in many of the same respects that modern skulls from the same regions differ. More controversial are the studies of some anthropologists, contested by others, reporting continuity of racial skull characteristics for hundreds of thousands of years. If those studies are correct, then some of the human racial variation that we see today may predate the Great Leap Forward, and may have gone back to the times of
By the sajne token, natural selection surely explains
Seemingly the simplest trait to understand is skin colour. Our skins run the spectrum from various shades of black, brown, copper, and yellowish to pink with or without freckles. The usual story to explain this variation by natural selection goes as follows. People from sunny Africa have blackish skins. So too (supposedly) do people from other sunny places, like southern India and New Guinea. Skins are said to get paler as one moves north or south from the equator, until one reaches northern Europe, with the palest skins of all. Obviously, dark skins evolved in those people who were exposed to much sunlight. That is just like the skins of whites tanning under the summer sun (or in tanning salons!), except that tanning is a reversible response to sun rather than a permanent genetic one. It is equally obvious what good a dark skin does in sunny areas: it protects against sunburn and skin cancer. Whites who spend lots of time outdoors in the sun tend to get skin cancer, and they get it on exposed parts of their body like their head and hands. Does that not all make sense?
Yes, but… it is really not so simple at all. To begin with, skin cancer and sunburn cause little debilitation and few deaths. As agents of natural selection, they have an utterly trivial impact compared to infectious diseases of childhood. Hence many other theories have been proposed to explain the supposed pole-to-equator gradient in skin colour.
One favourite competing theory notes that the sun's ultraviolet rays promote vitamin D formation in a layer of our skin beneath the main pigmented layer. Thus, people in sunny tropical areas might have evolved dark skin to protect them against the risk of kidney disease caused by too much vitamin D, while people in Scandinavia with its long dark winters evolved pale skins to protect them against the risk of rickets caused by too little vitamin D. Two other popular theories are that dark skins are to protect our internal organs against overheating by the tropical sun's infrared rays, or—just the opposite—dark skins help keep tropical people warm when the temperature drops. And if those four theories are not enough for you, consider four more: that dark skins provide camouflage in the jungle, or that pale skins are less sensitive to frostbite, °r that dark skins protect against beryllium poisoning in the tropics, or that pale skins cause deficiency of another vitamin (folic acid) in the tropics.
With at least eight theories in the running, we can hardly claim to understand why people from sunny climates have dark skins. That in rtself does not refute the idea that, somehow, natural selection caused the evolution of dark skins in sunny climates. After all, dark skins could have multiple advantages, which scientists may sort out some day. Instead, the heaviest objection to any theory based on natural selection is that the association between dark skins and sunny climates is a very imperfect one. Native peoples had very dark skins in some areas receiving relatively little sunlight, like Tasmania, while skin colour is only medium in sunny areas of tropical Southeast Asia. No American Indians have black skins, not even in the sunniest parts of the New World. When one takes cloud cover into account, the world's most dimly lit areas, receiving a daily average of under three-and-a- half hours of sunlight, include parts of equatorial West Africa, southern China, and Scandinavia, inhabited respectively by some of the world's blackest, yellowest, and palest peoples! Among the Solomon Islands, all of which share a similar climate, jet-black people and lighter people replace each other over short distances. Evidently, sunlight has not been the sole selective factor that moulded skin colour.
The first response of anthropologists to these objections is to raise a counter-objection, the time factor.