statement ('there goes a medium-sized cat'), an exclamation ('watch out for that medium-sized cat! ) or a proposition ('let's run up a tree or take other appropriate action to avoid that medium-sized cat'). At present it is not clear which of those functions the leopard call fills, or whether it fills a combination of them. Similarly, I was excited when my then one-year-old son Max said 'juice', which I proudly took to be one of his first words. To Max, though, the syllable 'juice' was not just his academically correct identification of a external referent with certain properties, but it also served as a proposition: 'Give me some juice! Only at a later age did Max add more syllables, like 'gimme juice', to distinguish propositions from pure words. Vervets show no evidence of having reached that stage.
On the second question of extent of 'vocabulary', even the most advanced animals seem, on the basis of present knowledge, to be far behind us. The average human has a daily working vocabulary of around a thousand words; my compact desk dictionary claims to contain 142,000 words; but only ten calls have been distinguished even for vervets, the most intensively studied mammal. Animals and humans surely do differ in vocabulary size, yet the difference may not be as great as these numbers suggest. Remember how slow has been our progress in distinguishing vervet calls. Not until 1967 did anyone realize that these common animals had
However, it is unlikely that any studies on vervets will reveal to us the limits attained by animal vocal communication, because those limits are probably reached by apes rather than by monkeys. While the sounds made by chimps and gorillas seem to our ears to be unsophisticated grunts and shrieks, so did the sounds made by vervet monkeys until they were studied carefully. Even unfamiliar human languages can sound like undifferentiated gibberish to us. Unfortunately, vocal communication by wild chimps and other apes has never been studied by the methods applied to vervets, because of logistical problems. The width of a troop's territory is typically less than 2,000 feet for vervets but is several miles for chimps, making it far harder to carry out playback experiments with video cameras and hidden loudspeakers. These logistical problems cannot be overcome by studying groups of apes caught in the wild and held captive in conveniently-sized zoo cages, because the captives generally constitute an artificial community of individuals caught at different African locations and thrown together in a cage. As I will discuss later in this chapter, humans originally speaking different languages, when captured at different African locations and thrown together as slaves, converse in only the crudest shadow of human language, virtually without any grammar. Similarly, captive apes taken from the wild must be virtually useless for studying the degree of sophistication of a vocal community of wild apes. The problem will remain unsolved until someone works out how to do for wild chimps what Cheney and Seyfarth have done for wild vervets.
Several groups of scientists have nevertheless spent years training captive gorillas, common chimps, and pygmy chimps to understand and use artificial languages based on plastic chips of different sizes and colours, or on hand signs similar to those used by deaf people, or on consoles, like a gigantic typewriter with each key bearing a different symbol. The animals have been reported to learn the meanings of up to several hundred symbols, and a pygmy chimp has recently been reported to understand (but not to utter) a good deal of spoken English. At the least, these studies of trained apes reveal that they possess the intellectual capabilities for mastering large vocabularies, begging the obvious question of whether they have evolved such vocabularies in the wild.
It is suspicious that wild gorilla troops may be seen sitting together for a long time, grunting back and forth in seemingly undifferentiated gibberish, until suddenly all the gorillas get up at the same time and head off in the same direction. One wonders whether there really was a transaction concealed within that gibberish. Because the anatomy of apes' vocal tracts restricts their ability to produce the variety of vowels and consonants that we can, the vocabulary of wild apes is unlikely to be anywhere as large as our own. Nevertheless, I would be surprised if wild chimp and gorilla vocabularies did
The last unanswered question concerns whether animal vocal communication involves anything that could be considered grammar or syntax. Humans do not only have vocabularies of thousands of words with different meanings. We also combine those words and vary their forms in ways prescribed by grammatical rules that determine the meaning of the word combinations. Grammar thereby allows us to construct a potentially infinite number of sentences from a finite number of words. To appreciate this point, consider the different meaning of the following two sentences, composed of the same words and endings but with different word order, which constitutes one set of the grammatical rules that specify sentence meaning in the English language:
'Your hungry dog bit my old mother's leg. or
'My hungry mother bit your old dog's leg.
If human language did not involve grammatical rules, those two sentences would have exactly the same meaning. Most linguists would not dignify an animal's system of vocal communication with the name of language, no matter how large its vocabulary, unless it also involved grammatical rules.
No hint of syntax has been discovered in the studies of vervets to date. Most of their grunts and alarm calls are single utterances. When a vervet gives a sequence of two or more utterances, all analysed cases have Jproved to consist of the same utterance repeated, as has also been the case when one vervet has been recorded responding to another vervet's call. Capuchin monkeys and gibbons do have calls of several elements used °nly in certain combinations or sequences, but the meanings of these combinations remain to be deciphered (by us humans, that is).
I doubt that any student of primate vocalizations expects even wild chimps to have evolved a grammar remotely approaching the complexity of human grammar, complete with prepositions, verb tenses, and interrogative particles. However, it remains for the present an open question whether any animal has evolved syntax. The necessary studies on the wild animals most likely to use grammar—pygmy or common chimps—simply have not yet been attempted.
In short, while the gulf between animal and human vocal communication is surely large, scientists are rapidly gaining understanding of the causeway that evolved over that gulf from the animal side. Now let's trace the bridge from the human side. We have already discovered complex animal 'languages'; do any truly primitive human languages still exist?
To help us recognize what a primitive human language might sound like if there were any, let's remind ourselves of the ways in which normal human language differs from vervet vocalizations. One difference is that of grammar. Humans, but not vervets, possess grammar, meaning the variations in word order, prefixes, suffixes, and changes in word roots (such as 'they', 'them', 'their') that modulate the sense of the roots. A second difference is that vervet vocalizations, if they constitute words at all, stand only for things that one can point to or act out. One could try to argue that vervet calls do include the equivalents of nouns ('eagle') and verbs or verb phrases ('watch out for the eagle'). Our words clearly include both nouns and verbs that are distinct from each other, as well as adjectives. Those three parts of a speech referring to specific objects, acts, or qualities are termed lexical items. But up to half of the words in typical human speech are purely grammatical items, with no referent that one can point to.
These grammatical words include our prepositions, conjunctions, articles, and auxiliary verbs (words like 'can', 'may', 'do', and 'should'). It is much harder to understand how grammatical items could evolve than it is for