other than either is like us, implying that we branched off before the gorillas and chimps diverged from each other. This conclusion reflects the common-sense view that chimps and gorillas can be lumped in a category termed 'apes', while we are something different. However, it is also conceivable that we look distinct only because chimps and gorillas have not changed much since we shared a common ancestor with them, while we were changing greatly in a few important and highly visible features like upright posture and brain size. In that case, humans might be most similar to gorillas, or humans might be most similar to chimps, or humans and gorillas and chimps might be roughly equidistant from each other, in overall genetic make-up.
Hence, anatomists have continued to argue about the first question, the details of our family tree. Whichever tree one prefers, anatomical studies by themselves tell us nothing about the second and third questions, our time of divergence and genetic distance from apes. Perhaps fossil evidence might in principle solve the questions of the correct ancestral tree and of dating, though not the question of genetic distance. If we had abundant fossils, we might hope to find a series of dated proto-human fossils and another series of dated proto- chimp fossils converging on a common ancestor around ten million years ago, converging in turn on a series of proto-gorilla fossils twelve million years ago. Unfortunately, that hope for insight from the fossil record has also been frustrated, because almost no ape fossils of any sort have been found for the crucially relevant period between five and fourteen million years ago in Africa.
The solution to these questions about our origins came from an unexpected direction: molecular biology as applied to bird taxonomy. About thirty years ago, molecular biologists began to realize that the chemicals of which plants and animals are composed might provide 'clocks' by which to measure genetic distances and to date times of evolutionary divergence. The idea is as follows. Suppose there is some class of molecules that occurs in all species, and whose particular structure in each species is genetically determined. Suppose further that that structure changes slowly over the course of millions of years because of genetic mutations, and that the rate of change is the same in all species. Two species derived from a common ancestor would start off with identical forms of the molecule, which they inherited from that ancestor, but mutations would then occur independently and produce structural changes between the molecules of the two species. The two species' versions of the molecule would gradually diverge in structure. If we knew how many structural changes occur on the average every million years, we could then use the difference today in the molecule's structure between any two related animal species as a clock, to calculate how much time had passed since the species shared a common ancestor. For instance, suppose one knew from fossil evidence that lions and tigers diverged five million years ago. Suppose the molecule in lions were ninety-nine per cent identical in structure to the corresponding molecule in tigers and differed only by one per cent. If one then took a pair of species of unknown fossil history and found that the molecule differed by three per cent between those two species, the molecular clock would say that they had diverged three times five million, or fifteen million, years ago.
Neat as this scheme sounds on paper, testing whether it succeeds in practice has cost biologists much effort. Four things had to be done before molecular clocks could be applied: find the best molecule; find a quick way of measuring changes in its structure; prove that the clock runs steady (that is, that the molecule's structure really does evolve at the same rate among all species that one is studying); and measure what that rate is.
Molecular biologists worked out the first two of these problems by around 1970. The best molecule proved to be deoxyribonucleic acid (abbreviated to DNA), the famous substance whose structure James Watson and Francis Crick showed to consist of a double helix, thereby revolutionizing the study of genetics. DNA is made up of two complementary and extremely long chains, each made up of four types of small molecules whose sequence within the chain carries all the genetic information transmitted from parents to offspring. A quick method of measuring changes in DNA structure is to mix the DNA from two species, then to measure by how many degrees of temperature the melting point of the mixed (hybrid) DNA is reduced below the melting point of pure DNA from a single species. Hence the method is generally referred to as DNA hybridization. As it turns out, a melting point lowered by one degree centigrade (abbreviated: delta T = 1 °C) means that the DNA's of the two species differ by roughly one per cent. In the 1970s most molecular biologists and most taxonomists had little interest in each other's work. Among the few taxonomists who appreciated the potential power of the new DNA hybridization technique was Charles Sibley, an ornithologist then serving as Professor of Ornithology and Director at Yale's Peabody Museum of Natural History. Bird taxonomy is a difficult field because of the severe anatomical constraints imposed by flight. There are only so many ways to design a bird capable, say, of catching insects in mid-air, with the result that birds of similar habits tend to have very similar anatomies, whatever their ancestry. For example, American vultures look and behave much like Old World vultures, but biologists have come to realize that the former are related to storks, the latter to hawks, and that their resemblances result from their common lifestyle.
Frustrated by the shortcomings of traditional methods for deciphering bird relationships, Sibley and Jon Ahlquist turned in 1973 to the DNA clock, in the most massive application to date of the methods of molecular biology to taxonomy. Not until 1980 were Sibley and Ahlquist ready to begin publishing their results, which eventually came to encompass applying the DNA clock to about 1,700 bird species—nearly one-fifth of all living birds.
While Sibley's and Ahlquist's achievement was a monumental one, it initially caused much controversy because so few other scientists possessed the blend of expertise required to understand it. Here are typical reactions I heard from my scientist friends:
I'm sick of hearing about that stuff. I no longer pay attention to anything those guys write, (an anatomist).
'Their methods are okay, but why would anyone want to do something so boring as all that bird taxonomy? (a molecular biologist).
'Interesting, but their conclusions need a lot of testing by other methods before we can believe them, (an evolutionary biologist).
'Their results are The Revealed Truth, and you better believe it, (a geneticist).
My own assessment is that the last view will prove to be the most nearly correct one. The principles on which the DNA clock rests are unassailable; the methods used by Sibley and
Ahlquist are state-of-the-art; and the internal consistency of their genetic-distance measurements from over 18,000 hybrid pairs of bird DNA testifies to the validity of their results.
Just as Darwin had the good sense to marshal his evidence for variation in barnacles before discussing the explosive subject of human variation, Sibley and Ahlquist similarly stuck to birds for most of the first decade of their work with the DNA clock. Not until 1984 did they publish their first conclusions from applying the same DNA methods to human origins, and they refined their conclusions in later papers. Their study was based on DNA from humans and from all of our closest relatives: the common chimpanzee, pygmy chimpanzee, gorilla, orangutan, two species of gibbons, and seven species of Old World monkeys. The figure on this page summarizes the results.
As any anatomist would have predicted, the biggest genetic difference, expressed in a big DNA melting point lowering, is between monkey DNA and the DNA of humans or of any ape. This simply puts a number on what everybody has agreed ever since apes first became known to science: that humans and apes are more closely related to each other than either are to monkeys. The actual statistic is that monkeys share ninety-three per cent of their DNA structure with humans and apes, and differ in seven per cent.
Equally unsurprising is the next biggest difference, one of five per cent between gibbon DNA and the DNA of other apes or humans. This too confirms the accepted view that gibbons are the most distinct apes, and that our affinities are instead with gorillas, chimpanzees, and orangutans. Among those latter three groups of apes, most recent anatomists have considered the orangutan as somewhat separate, and that conclusion too fits the DNA evidence: a difference of 3.6 % between orangutan DNA and that of humans, gorillas, or chimpanzees. Geography confirms that the latter three species parted from gibbons and orangutans quite some time ago: living and fossil gibbons and orangutans are confined to Southeast Asia, while living gorillas and chimpanzees plus early fossil humans are confined to Africa.
At the opposite extreme but equally unsurprising, the most similar DNAs are those of common chimpanzees and pygmy chimpanzees, which are 99.3 % identical and differ by1 only 0.7 %. So similar are these two chimp species in appearance that it was not until 1929 that anatomists even bothered to give them separate names. Chimps living on the equator in central Zaire rate the name 'pygmy chimps' because they are on average slightly smaller (and have more slender builds and longer legs) than the widespread 'common chimps' ranging