the drama began. Archaeologists term these pioneering ancestral Indians the Clovis people, since their stone tools were first recognized at an excavation near the town of Clovis, ten miles inside New Mexico from the Texas border. However, Clovis tools or ones similar to them have been found in all forty-eight contiguous states of the US, and from Edmonton in the north to Mexico. Vance Haynes, a University of Arizona archaeologist, has emphasized that the tools are much like those of the earlier Eastern European and Siberian mammoth hunters, with one conspicuous exception: the flattish, two-faced, stone spear-points were 'fluted' on each face as a result of a longitudinal groove having been chipped out to make it easier to bind the stone point to the shaft. It is not clear whether the fluted points were mounted on spears to throw by hand, on darts to hurl by a throwing stick, or on lances to thrust. Somehow, though, the points were propelled into big mammals with such force that the points sometimes snapped in half, or else penetrated bone. Archaeologists have dug up skeletons of mammoths and bison with Clovis points inside the rib cage, including a mammoth from southern Arizona containing a total of eight points. At excavated Clovis sites, mammoths are by far the commonest prey (to judge from their bones), but other victims include bison, mastodonts, tapirs, camels, horses, and bears.
Among the startling discoveries about Clovis people is the speed of their spread. All Clovis sites in the US dated by the most advanced radiocarbon techniques were occupied for only a few centuries, in the periodjust before 11,000 years ago. A human site even at the southern tip of Patagonia is dated at about 10,500 years ago. Thus, within about a millenium of emerging from the ice-free corridor at Edmonton, humans had spread from coast to coast and over the entire length of the New World.
Equally startling is the rapid transformation of Clovis culture. Around 11,000 years ago Clovis points are abruptly replaced by a smaller, more finely made model now known as Folsom points (after a site near Folsom, New Mexico, where they were first identified). The Folsom points are often found associated with bones of an extinct wide-horned bison, never with the mammoths preferred by Clovis hunters.
There may be a simple reason why Folsom hunters switched from mammoths to bison: there were no more mammoths left. There also were no more mastodonts, camels, horses, giant ground sloths, nor several dozen other types of big mammals. In all, North America lost an astonishing seventy-three per cent, and South America eighty per cent, of their genera of big mammals around this time. Many paleontologists do not blame this American extinction spasm on Clovis hunters, since there is no surviving evidence of mass slaughter—only the fossilized bones of a few butchered carcasses here and there. Instead, those paleontologists attribute the extinctions to changes of climate and habitats at the end of the ice ages, just around the time that Clovis hunters arrived. That reasoning puzzles me for several reasons. Ice-free habitats for mammals expanded rather than contracted as glaciers yielded to grass and forest; big American mammals had already survived the ends of at least twenty-two previous ice ages without such an extinction spasm; and there were far fewer extinctions in Europe and Asia when the glaciers of those continents melted around the same time.
If changing climate had been the cause, one might have expected opposite effects on species preferring hot and cold climates. Instead, radiocarbon-dated fossils from the Grand Canyon show that the Shasta ground sloth and Harrington's mountain goat, derived from areas of hot and cold climates respectively, both died out within a century or two of each other, around 11,100 years ago. The sloths were common until just before their sudden extinction. In their softball-sized dung balls, still well-preserved in some southwestern US caves, botanists have identified remains of plants on which the last sloths chomped: the Mormon tea and globe mallow, which still occur around those caves today. It is highly suspicious that both those well-fed sloths and the goats of the Grand Canyon disappeared just after Clovis hunters reached Arizona. Juries have convicted murderers on the grounds of less compelling circumstantial evidence. If climate really was what did in the sloths, we would have to credit those supposedly stupid beasts with unsuspected intelligence, since they all chose to drop dead simultaneously at just the right moment to deceive some twentieth-century scientists into blaming Clovis hunters.
A more plausible explanation of this 'coincidence' is that it really was a case of cause and effect. Paul Martin, a geoscientist at the University of Arizona, describes the dramatic outcome of hunter-meets-elephant as a blitzkrieg'. According to his view, the first hunters to emerge from the ice-free corridor at Edmonton thrived and multiplied, because they found an abundance of tame, casy-to-hunt big mammals. As the mammals were killed off in one area, the hunters and their offspring kept tanning out into new areas that still had abundant mammals, and kept exterminating the mammal populations at the front of their advance. By the time that the hunters' front finally reached the south tip of South America, most of the big mammal species of the New World had been exterminated.
Martin's theory has attracted lots of vigorous criticism, most of it centring on four doubts. Could a band of 100 hunters arriving at Edmonton breed fast enough to populate a hemisphere in a thousand years? Could they spread fast enough to cover the nearly 8,000 miles from Edmonton to Patagonia in that time? Were Clovis hunters really the first people in the New World? And could stone-age hunters really pursue hundreds of millions of big mammals so efficiently that not a single individual survived, while nevertheless leaving little fossil evidence of their hunts? Take first the question of breeding rates. Populations of modern hunter-gatherers on even their best hunting grounds number only about one per square mile. Hence, once the whole western hemisphere had been settled, its population of hunter-gatherers would have been at most ten million, since the New World's area outside of Canada and other areas covered by glaciers in Clovis times is about ten million square miles. In modern instances where colonists have arrived at an uninhabited land (for instance, when the H.M.S-.
Could the descendants of the Edmonton pioneers have reached the south tip of South America in a thousand years? The overland straight-line distanced slightly under 8,000 miles, so that they would have to average eight miles a year. That is a trivial task—any fit hunter or huntress could have fulfilled the year's quota in a day and not moved for another 364 days. The quarry from which a Clovis tool was made can often be identified by its local type of stone, and we know in that way that individual tools travelled up to 200 miles. Some of the nineteenth-century Zulu migrations in southern Africa are known to have covered nearly 3,000 miles in a mere fifty years. Were Clovis hunters the first humans to spread south of the Canadian ice sheet? That is a harder question, and it is extremely controversial among archaeologists. Primacy claims for Clovis are inevitably based on negative evidence: there are no unequivocal human remains or artifacts with universally accepted pre-Clovis dates anywhere in the New World south of the former Canadian ice sheet. Mind you, there are dozens of