величина и, взяв мягкую «пружинку» (так называемый кантилевер), можно, коснувшись поверхности всего парой атомов, почувствовать момент этого контакта. В первом АСМ прогиб маленькой пружинки (кусочка тонкой металлической фольги) измеряли с помощью туннельного тока, возникавшего между этой фольгой и острием пристроенного к ней СТМ. В следующих версиях наноперемещения упругого кантилевера стали измерять с помощью оптического интерферометра. Сегодня все стало совсем просто: угол изгиба кремниевого кантилевера измеряют с помощью луча лазерного светодиода, отражающегося от его зеркальной поверхности на четыре приемных фотодиода. Это устройство очень напоминает игру с солнечным зайчиком: когда от небольшого поворота зеркала он скачет на огромные расстояния. На похожем принципе работает и лазерная головка в проигрывателях CD– и DVD-дисков. Жесткость у атома достаточно велика, но если мы хотим измерить его истинное положение, сильно давить на него всетаки нельзя. Поэтому используемые в АСМ зонды имеют действительно микроскопические размеры и изготавливаются по той же технологии, что и основные элементы современной микроэлектроники. Длина кантилевера, предназначенного для исследования поверхности, составляет 100—300 мкм, ширина 20—60 мкм, а толщина всего 1—2 мкм. Жесткость этих маленьких гибких пружинок не превышает 100 Н/м и может опускаться до 0,1 Н/м, а резонансная частота изменяется от сотен до десятков кГц. На кончике кантилевера располагается микроиголочка длиной 10– 15 мкм с радиусом кривизны острия всего 10 нм! Такой тонкий зонд (кантилевер) настолько мягок, что его заметно изгибают даже силы притяжения Ван-дер-Ваальса, возникающие между атомами кончика иголочки и исследуемой поверхности. Режим работы, когда ориентируются именно на такой изгиб зонда, называется бесконтактной модой. Работая в контактной моде, АСМ по-простому прижимается иглой к образцу, немного изгибая кантилевер. Силу прижима при этом выбирают исходя из прочностных свойств материала. В результате современные АСМ измеряют форму поверхности, просто скользя этой иголочкой вдоль образца и следя за тем, чтобы угол изгиба кантилевера имел постоянную величину. Для того чтобы различать отдельные атомы, АСМ, как и СТМ, приходится помещать в вакуум и использовать достаточно мягкие кантилеверы. Однако для многих интересных технологических применений атомарное разрешение совсем не нужно и вполне достаточно нанометрового или даже на порядок худшего – 0,01 мкм. При таких вольготных технических требованиях конструкция АСМ упрощается настолько, что это устройство легко умещается вместе с управляющим ноутбуком в небольшую походную сумку.

Зондирующий колокольчик

«Сухой» контакт, возникающий между иглой и поверхностью, в контактной моде АСМ оказался очень неприятной вещью. Мало того что игла в таком режиме работы стирается и тупится, она к тому же активно перемещает адсорбированные атомы по поверхности образца и рвет биологические молекулы, лежащие на гладкой рабочей поверхности. Избавиться от этого неудобства удалось достаточно изящным способом: кантилевер с иголочкой на конце заставили колебаться на резонансной частоте с амплитудой в несколько десятков нм. Такой режим работы АСМ называют таппинг-модой, поскольку зонд как бы обстукивает исследуемую поверхность своей иголочкой.

Понять, почему такой колеблющийся кантилевер будет хорошо чувствовать поверхность, легко: достаточно коснуться звенящего колокольчика рукой. Колокольчик мгновенно замолчит, так как его колебания быстро затухнут, поскольку энергия начнет «уходить» в руку.

Колеблющийся зонд очень полюбился физикам, биологам и технологам, и сегодня именно такой режим работы чаще всего используется в АСМ. Возбуждая зонд на резонансной частоте и следя не только за амплитудой, но и за частотой собственных колебаний кантилевера, можно получить дополнительную информацию о механических свойствах исследуемого материала. С помощью иголочки, которая ударяет по поверхности сотни тысяч раз в секунду, как правило, не удается увидеть отдельные атомы, но это не так уж и важно для большинства технологических применений АСМ.

Используя колеблющийся зонд, можно вообще отказаться от сверхминиатюрных и мягких кантилеверов. Оказалось, что пьезорезонансные датчики, активно использующиеся в промышленности для измерения температуры, давления и массы, можно употребить и в такой деликатной области, как атомно-силовая микроскопия. Маленький камертон, изготовленный из пьезокерамики, отлично чувствует момент непосредственного контакта установленной на нем иглы с поверхностью и позволяет уверенно различать элементы структуры поверхности размером менее 10 нм в плоскости и 1 нм по высоте. При этом его собственная жесткость соизмерима с жесткостью пружины от подвески «Жигулей», а геометрические размеры измеряются миллиметрами.

Сенсорика атома

В туннельном микроскопе между острием и поверхностью нет прямого механического контакта, поскольку электроны летают между зондом и образцом через вакуумный промежуток. Однако электрические силы, действующие на острие и находящиеся под ним атомы, существуют, и они совсем не маленькие. Под действием этих сил атомы могут мигрировать по поверхности и даже улетать с острия. Это очень ценное свойство СТМ сегодня активно используется при работе с квантовыми точками и изолированными ионами.

Но эти электрические силы накладывают и определенные ограничения на жесткость зонда с иглой в СТМ. Мягкий зонд, используемый в классических АСМ, при прикладывании к нему электрического напряжения под действием этих сил мгновенно изгибается и врезается в поверхность. В этом состоит одна из принципиальных причин, затрудняющих совмещение в одном приборе с одним и тем же зондом туннельного и атомносилового режимов. Случайное внедрение иглы в образец приводит к его деформации и поломке иглы. Но нет худа без добра. Способность АСМ делать маленькие дырочки и рисовать тонкие черточки сегодня активно используют для изучения прочности и износоустойчивости композиционных и тонкопленочных материалов. Правда, далеко не любой из современных материалов можно проколоть и поцарапать, используя тонкие кантилеверы и обычные кремниевые иглы.

У сканирующих зондовых микроскопов существует достаточно много узких специализаций и конструкций, разработанных под конкретные задачи. Чудес не бывает, и совместить в одном приборе рекордные характеристики, полученные на уникальных образцах, невозможно. Однако попытки создания универсального прибора, позволяющего одновременно измерять форму и механические свойства поверхности, а также определять проводимость и локальную емкость в точке контакта иглы с образцом, не прекращаются. Уже существуют экземпляры атомносиловых микроскопов, умеющие все это делать и к тому же позволяющие измерять микротвердость алмазоподобных пленок и истираемость защитного покрытия из углеродных нанотрубок.

Для того чтобы решить столь обширный комплекс задач, приходится использовать токопроводящие алмазные иглы и пьезорезонансные зонды с жесткостью автомобильной пружины. Именно благодаря такой большой жесткости всей конструкции (более 10 000 Н/м) электрическое напряжение между иглой и образцом не мешает нормальной работе АСМ. С помощью таких приборов в режиме реального времени можно наблюдать окисление кремния после того, как его поцарапали алмазной иглой зонда.

Глаза боятся, а руки делают, и успехи сканирующей микроскопии как нельзя лучше доказывают эту древнюю истину. Былой пиетет перед атомами и тем, как они друг за друга цепляются, безвозвратно ушел в прошлое. Осознание возможности «на ощупь» исследовать вещество и определять его структуру кардинально изменило представления о технологических возможностях в мире атомов. Ведь без умения измерять и контролировать параметры материалов и конструкций на нанометровом масштабе не может быть и речи о том, чтобы что-то осмысленно создавать в области нанотехнологий, где каждый атом на счету.

Кирилл Гоголинский, кандидат технических наук

Владимир Решетов, кандидат физико-математических наук

Арсенал:

Автомат Калашникова – классика огня

«Холодная война», начавшаяся сразу по окончании Второй мировой, стимулировала быстрое перевооружение противостоящих сторон. Советскому Союзу в сложных условиях восстановления разрушенного хозяйства пришлось вести новые разработки практически по всем направлениям: ядерное и управляемое ракетное оружие, зенитные средства, бронетанковая и авиационная техника, оружие пехоты.

Создание новой системы пехотного вооружения входило в число приоритетных задач послевоенного времени. Главными направлениями стали – разработки высокоманевренных образцов автоматического

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату