означать потерю выталкивающей силы примерно 20 т[13]. Если эту силу не компенсировать, частично опорожняя балластные цистерны от воды, подводная лодка будет опускаться все глубже и глубже, пока ее не раздавит давлением воды. В этом, между прочим, заключается одна из трудностей постройки подводной лодки из стеклопластиков, которые всем, пожалуй, хороши, кроме модуля упругости: он слишком мал.

Иногда думают, что затонувшие подводные лодки 'висят' где-то поблизости от океанского дна. Это, конечно, нелепое представление: если корпус потерпевшей аварию лодки и не сомнет давлением воды, что случается чаще всего, то он будет непрерывно сжиматься, выталкивающая сила будет падать и лодка будет опускаться на дно все быстрее и быстрее.

Воздушные шары, пневматические шины и т. п. представляют особый случай конструкции, в которой растягивающие напряжения в оболочке уравновешены давлением наполняющего их газа или жидкости. Поэтому большие баржи-мешки и надувные лодки обычно очень легкие и эффективные конструкции. Изобретение крыш, поддерживаемых изнутри воздухом, заставляет пересмотреть прежние архитектурные традиции, в этих конструкциях все элементы работают на растяжение, лишь воздух внутри здания сжат.

Балки и изгиб

Итак, мы знаем теперь, что понять, как работает конструкция на растяжение и сжатие, довольно легко. Но вот как те же самые растяжение и сжатие позволяют балкам выдерживать нагрузки - это далеко не очевидно. А между тем разного рода балки (рис. 11) составляют львиную долю всех конструкций, с которыми мы повседневно сталкиваемся. Самая обычная половая доска - наглядный пример балки, и таких примеров можно привести огромное множество. Мы уже говорили, что задача этой самой доски заключается в том, чтобы давить на наши подошвы вверх с силой, в точности равной нашему весу. Естественно, эту роль пол должен играть постоянно, в том числе и тогда, когда мы стоим посреди комнаты, далеко от стены, которая в конечном счете будет воспринимать силу нашего веса. Но позвольте, как эта сила передается от стены на наши ноги, и обратно?

Рис. 11. Свободно опертая балка.

Ответ на этот вопрос дает так называемая теория балок, которую, пожалуй, можно назвать становым хребтом техники. Но, к сожалению, этот 'хребет' представляет собой pons asinorum[14] для студентов технических вузов. Большинство из них механически заучивают формулы теории балок лишь для того, чтобы проскочить на экзаменах; понимать эти формулы они начинают гораздо позже, когда настает время мучаться над собственными проектами. Поэтому давайте пока оставим всю эту кухню интегрирования эпюр и попытаемся подступиться к существу проблемы.

Начнем с того, что вспомним высказанную ранее мысль об отсутствии четкого различия между понятиями 'материал' и 'конструкция'. Большие балки, например перекрытия железнодорожных мостов, подобно детскому конструктору, собираются из многих малых стержней. Эти стержни работают как на растяжение, так и на сжатие. Способ передачи нагрузки в такой решетчатой балке, или ферме, по существу не отличается от того, как передается нагрузка в сплошной балке, даже такой, как половая доска. В решетчатой балке вся нагрузка передается только путем сжатия и растяжения стержней. В сплошной балке такой решетки нет, но мы можем представить себе ее как бы прошивающей всю балку.

Для определенности начнем анализ с консольной балки, то есть с балки, один конец которой встроен в стену или жестко закреплен каким-либо другим способом на любом основании (на языке инженеров это называется 'заделка'): к другому концу консоли приложена нагрузка. Такую консоль рисовал еще Галилей (рис. 12); правда, он неверно рассчитал прочность своей консоли, что, впрочем, ему простительно. Мы же построим нашу консоль только из стержней и натянутых струн.

Рис. 12. Рисунок Галилея, иллюстрирующий испытания консольной балки.

Рассмотрим простую конструкцию типа крана, изображенную на рис. 13, а. Сжатый стержень 2 опирается на стену и поддерживается струной 1, таким образом он может воспринимать внешнюю нагрузку (назовем ее W). Очевидно, сила, противодействующая нагрузке W, возникает вследствие сжатия наклонного стержня 2. Натяжение горизонтальной струны 1 лишь предохраняет сжатый стержень 2 от поворота и падения.

С таким же успехом мы можем воспользоваться другой треугольной конструкцией (рис. 13, б), в которой сжатый стержень 4 занимает горизонтальное положение и удерживается от падения наклонной растянутой струной 3. В этом случае сила, удерживающая вес W, обеспечивается струной, а горизонтальный сжатый стержень необходим лишь для того, чтобы струна не прижималась к стене.

Обе эти конструкции одинаково хороши, и мы можем объединить их в одну, способную выдержать вес 2W, как показано на рис. 13, в. Ясно, что нагрузка 2W непосредственно воспринимается наклонными элементами 2 и 3, один из которых сжат, а другой растянут. Горизонтальные элементы 1 и 4 воздействуют на стену, один из них давит, другой - тянет, вместе они обеспечивают целостность конструкции, но не поддерживают вес груза непосредственно.

Рис. 13. Сопоставление напряженного состояния в сплошной балке и решетчатой ферме.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату