при этом большинство избыточных дислокаций исчезает. Так, медные трубы следует отжигать после гибки, в противном случае они будут хрупкими.

Часть II. Неметаллы

Глава 4

Торможение трещины, или как обеспечить вязкость

Плиний старший (23-79 гг. н.э.) в своей весьма путаной “Естественной истории” указывает способ, с помощью которого можно отличить неподдельный алмаз. Он советует положить предполагаемый алмаз на наковальню и ударить его тяжелым молотом как можно сильнее. Если камень не выдержит, он не настоящий алмаз. Надо думать, так было уничтожено немало драгоценных камней - ведь Плиний путает здесь твердость и вязкость. Алмаз - самый твердый из всех веществ, и его твердость очень полезна в тех случаях, когда необходимо резать, царапать или шлифовать; в этом состоит его главное применение в технике. Но алмаз, как и другие твердые драгоценные камни, довольно хрупок; и если бы даже его добывали большими кусками и в больших количествах, широко распространенным конструкционным материалом он бы не был.

Самый тяжкий грех конструкционного материала - не недостаток прочности или жесткости, которые, конечно, совершенно необходимы, а недостаток вязкости, иными словами - недостаточное сопротивление распространению трещин. Можно примириться с недостатком прочности или жесткости и учесть их в процессе конструирования, но бороться с трещинами, которые оказываются очень опасными, застигая инженера врасплох, намного труднее.

Большинство металлов и пород дерева, резина, стеклопластики, кости, зубы, одежда, канаты, нефрит - вязки. Большинство минералов, стекла, посудная керамика, канифоль, бакелит, бетон, печенье - хрупки. Хрупким можно назвать и обычное желе, это легко проверить за столом, наблюдая, как распространяются в нем трещины от ложки или вилки. Вещества, которые мы перечислили в каждом из списков, имеют довольно мало общего, вот почему не так просто выявить то, что делает одни вещи вязкими, а другие - хрупкими. В то же время различие между хрупкостью и вязкостью очень осязаемо. Обожженная глина и кусок жести имеют примерно одинаковую прочность на разрыв. Но если вы уроните на пол глиняный горшок, он разлетится вдребезги, а с упавшей консервной банкой ничего не случится - в худшем случае на ней появится небольшая вмятина. Прочность на разрыв обычных стекол и керамик может быть довольно большой, но никому не придет в голову делать из них, например, автомобиль. Причина ясна - очень уж они хрупки. Здравый смысл подсказывает это каждому из нас. Но почему? Что же такое хрупкость на самом деле?

Прежде всего, скорость нагружения - далеко не главное, что определяет хрупкость. Психологически существует большая разница между статической нагрузкой, которая прикладывается медленно, и динамической мгновенно приложенной ударной нагрузкой. Разница существует и на самом деле, и ею нельзя пренебречь, но она далеко не так важна, как это может показаться с первого взгляда. Мы стучим молотком не потому, что нам нужны удары сами по себе, а потому, что удар тяжелого молотка - очень удобный и дешевый путь получения большой локальной силы. Если бы мы приложили такую же по величине силу медленно, то, как правило, получили бы примерно тот же конечный результат. Это справедливо и в тех случаях, когда мы рассматриваем падение предметов на пол, автомобильные аварии, крушения самолетов, хотя в дальнейшем в этих явлениях мы увидим некоторые важные особенности. Однако независимо от того, медленно или быстро прикладывается сила к хрупкому телу, стоит только начаться разрушению - трещины будут распространяться в нем очень и очень быстро - обычно со скоростью несколько тысяч километров в час. Именно поэтому разрушение кажется нам мгновенным.

Мы уже говорили, что в каком-то смысле нет существенной разницы между механически нагруженным материалом и взрывчаткой. Энергия деформации упругого тела накапливается в натянутых химических связях, а при разрушении тела эта энергия освобождается. Если достигнута теоретическая величина деформации разрыва, все связи оказываются максимально натянутыми, и мы должны считать, что энергия деформации примерно равна энергии химических связей в материале. На практике, однако, материалы обычно разрушаются, не достигнув и малой толики теоретической прочности, так что освобожденная энергия при этом намного меньше, чем энергия, даваемая эквивалентным количеством взрывчатки. И все-таки разрушение может сопровождаться вполне ощутимым хлопком. Наблюдение за тем, как разрываются особо прочные волокна или усы (например, в машине Марша), убедительно показывает, что их прочность составляет значительную долю теоретической. В этом случае после разрыва не найдешь, как обычно, кусков образца: после взрывообразного разрушения волокно исчезает, оставляя лишь мелкую пыль. Такие испытания не опасны лишь потому, что прочные волокна, как правило, очень малы.

Ударная прочность

Здесь уместно прервать наш разговор об общей проблеме распространения трещины и поговорить о некоторых особых эффектах, которые возникают при динамических, ударных нагрузках. Сначала напомним, что максимальная скорость, с которой может передаваться нагрузка через любое вещество, равна скорости звука в этом веществе. В самом деле, звук можно представить себе как волну или серию волн напряжений, проходящих через среду с характерной скоростью.

Скорость звука в веществе равна (E/?)1/2, где Е - модуль Юнга, a ? - плотность данного вещества. Взяв обычные числовые значения величин Е и g для конструкционных материалов, мы увидим, что скорость звука в этих. материалах будет очень большой. Для стали, алюминия и стекла она составит около 18000-20000 км/час (~5000 м/сек), что значительно превышает скорость звука в воздухе. Это также намного больше скорости удара молотка и значительно больше

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату