Все эти рассуждения подводят нас к понятиям 'напряжение' и 'деформация'. Когда мы говорили о силах, то имели в виду полные величины сил, действующих на тело. Такой силой мог быть любой груз. Когда мы говорили о смещении под нагрузкой, то имели в виду полные смещения независимо от размеров объекта, будь он большим или малым. Однако все это не позволяет нам сравнивать большой объект под большой нагрузкой с малым объектом под меньшей нагрузкой. Например, если из стали одного сорта изготовить крошечную деталь пишущей машинки и корпус воздушного лайнера, то какие характеристики этого материала, работающего в столь различных условиях, можно было бы сравнивать? Без ответа на этот вопрос мы не можем продолжать разговор о материалах и конструкциях. Нужные нам величины называются напряжением и деформацией. Напряжение - это нагрузка, отнесенная к единице площади, то есть ?=
Точно так же, если кирпичная опора моста имеет поперечное сечение 10x5 м и на мост въезжает локомотив весом в 125 т, то сжимающее напряжение в кирпичной кладке будет около 0,25 кг/см2. Теперь мы с полной определенностью можем сказать, что в обоих случаях напряжения в кирпиче примерно одинаковы, и если одна конструкция не разрушается, то, по-видимому, не разрушится и другая. Что касается кирпичей, то их молекулы поджимаются одна к другой одинаковыми силами, хотя вес локомотива и вес моего тела совершенно различны. Очевидно, что инженера должны интересовать именно такие величины.
Напряжение может быть выражено в килограммах на квадратный миллиметр (кг/мм2), килограммах на квадратный сантиметр (кг/см2), ньютонах на квадратный метр (Н/м2) или других подобных единицах[8] .
Разумеется, эти единицы применяются к любым поперечным сечениям и к любой точке, а не только к квадратным миллиметрам, квадратным сантиметрам и т.п. То, что цена одного килограмма масла 3 рубля, вовсе не означает, что ее используют лишь для веса в один килограмм. Деформация - это величина удлинения стержня под нагрузкой, отнесенная к начальной длине. Очевидно, что отрезки различной длины при одной и той же нагрузке получают в конструкциях различное удлинение. Если обозначить деформацию через ?, то ? = ?
где ?
В данном случае нас интересует лишь то, насколько изменилось взаимное положение атомов и молекул. Деформация, так же как и напряжение, не зависит от размера образца. Деформация есть отношение удлинения к начальной длине, и, следовательно, она безразмерна и не зависит от того, какой системой единиц мы пользуемся.
Закон Гука
Роберт Гук был первым, кого осенила догадка о том, что происходит при нагружении твердого тела. Он был не только физиком, но и известным архитектором и инженером. Ему нередко случалось беседовать со знаменитым часовых дел мастером Томасом Томпионом (1639–1719). Они толковали о поведении пружин и маятников. Ничего не зная, конечно, о химических и электрических межатомных связях, Гук понял, что часовая пружина - всего лишь частный случай поведения любого твердого тела, что в природе нет абсолютно жестких тел, а упругость является свойством всякой конструкции, всякого твердого тела.
Свои претензии на приоритет Гук оговорил в работе 'Десяток изобретений, которые я намерен опубликовать' (1676). Среди других проблем там была 'Истинная теория упругости и жесткости'. Под этим заголовком стояла лишь анаграмма ceiiinosssttuu, которую можно было понимать как угодно. Лишь тремя годами позже в трактате о пружинах 'De potentia restitutiva' ('О восстанавливающей силе') Гук расшифровал ее латинской фразой '
Иными словами, напряжение пропорционально деформации, и наоборот. Так, если упругое тело, например струна, удлиняется на 1 см под нагрузкой 100 кг, то под нагрузкой 200 кг удлинение составит 2 см и так далее,
По существу, закон Гука является приближенным соотношением, которое вытекает из характера межатомных взаимодействий. Различные типы химических связей (Приложение I) в конечном счете дают зависимость действующей между двумя атомами силы от расстояния между атомами, как это схематически показано на рис. 3.
При очень больших деформациях - скажем 5–10% - от пропорциональности между напряжениями и деформациями не остается и следа. Но обычно деформации не превышают ±1%, а в этом диапазоне зависимость между напряжениями и деформациями линейна. Кроме того, для малых деформаций процесс нагрузки и разгрузки обратим, то есть кусок материала можно нагрузить и снять с него нагрузку тысячи и миллионы раз с одним и тем же результатом. Наглядный пример этому - пружинка балансира в часах, которая повторяет этот процесс 18 000 раз в час. Такой тип поведения твердого тела под нагрузкой называется упругим. Упругое поведение свойственно большинству технических материалов, хотя