растягивающие напряжения. При этом у стены появляется бурная тенденция к порождению 'шарнирных' точек; поворачиваясь вокруг этих точек, стены рушатся.
Арки - конструкции, гораздо более прочные и надежные, чем стены, но и в них иногда могут образоваться четыре 'шарнирные' точки, после чего арка может уменьшить как свою упругую энергию, так и потенциальную энергию, сложившись вначале как механизм и свалившись затем грудой камней. Во всяком случае, согласно расчетам, проводимым нами в гл. 8, существующие напряжения сжатия в каменной кладке фактически очень невелики, они гораздо ниже общепринятого предела прочности материала на сжатие.
Предел прочности на сжатие,
Если взять кирпич или небольшой бетонный блок и подвергнуть их действию значительной сжимающей нагрузки (в испытательной машине или любым другим методом), материал в конце концов, разрушится тем способом, который условно называют 'разрушением при сжатии'. Хрупкие материалы, например камень, кирпич, бетон или стекло, обычно при этом рассыпаются на куски, а иногда и в пыль. Но, строго говоря, это вовсе не разрушение сжатием, так как в действительности оно почти всегда происходит из-за сдвига. Как мы видели в предыдущей главе, сжатие и растяжение образца с необходимостью приводят к появлению напряжений сдвига, действующих под углом 45°, и именно этот сдвиг по наклонным площадкам и служит обычно причиной разрушения коротких образцов при их сжатии.
Как мы уже говорили, практически во всех хрупких материалах существует множество микротрещин, царапин и того или иного рода дефектов. Если даже они не возникли при изготовлении материала, то практически неизбежно появятся потом из-за самых разнообразных причин. Естественно, что эти трещины и царапины в материале имеют всевозможные направления. Значительное число их окажется направленным под углом +45° к напряжению сжатия, то есть они будут более или менее параллельны возникающим напряжениям сдвига (рис. 135).
Как и в случае растяжения, для этих сдвиговых трещин существует критическая длина по Гриффитсу. Другими словами, трещина данной длины начинает распространяться, когда касательное напряжение достигает некоторого критического значения. Если в хрупком материале, например бетоне, достигаются эти критические условия, то сдвиговые трещины распространяются практически мгновенно, процесс может носить почти взрывной характер. Когда сдвиговая трещина пройдет по диагонали поперек всего образца, две его части начинают скользить относительно друг друга. Образец уже не может больше сопротивляться сжимающей нагрузке, материал разгружается, выделяя большое количество упругой энергии, и именно поэтому, когда хрупкие материалы (стекло, бетон, камень) сжимают или разбивают молотком, разлетаются осколки, которые могут быть опасными. Выделенной энергии деформации часто оказывается достаточно для превращения материала в пыль. Именно это происходит, когда мы толчем кусочки сахара в ступке.
Разрушение сжатием пластичного металла (скажем, масла или пластилина) происходит по аналогичным причинам. Под действием касательных напряжений слои металла начинают проскальзывать[99] по дислокационному механизму. И снова скольжение происходит вдоль плоскостей, расположенных примерно под углом 45° к сжимающей нагрузке, короткий металлический образец расползается, приобретая бочкообразную форму (рис. 136). Благодаря большой работе разрушения пластичного металла вероятность выброса осколков в этом случае невелика и непосредственные следствия разрушения бывают менее опасными и драматичными. Когда мы бьем молотком по головке заклепки или используем для этого гидравлический пресс, мы рассчитываем именно на эту склонность металла расплющиваться при сжатий.
Материалы типа дерева или искусственных волокнистых композитов, например стеклопластика или углепластика, при сжатии обычно разрушаются иначе. Армирующие волокна под действием сжимающих нагрузок изгибаются все вместе, 'коллективно', образуя складку, бегущую поперек образца. Эти складки могут проходить под углом 90° к направлению сжимающих сил или наклонно под различными углами (рис. 137). К сожалению, в композиционных материалах складки часто образуются уже при сравнительно небольших напряжениях, то есть на сжатие эти материалы работают плохо, что следует иметь в виду при использовании их в конструкциях.
Сравнение прочности материалов на растяжение и на сжатие
Содержимое многочисленных учебников и справочников - обширные таблицы прочности на разрыв практически всех конструкционных материалов. Как правило, книги эти гораздо более сдержанны в отношении прочности на сжатие. Одна из причин этого в том, что экспериментальные значения прочности при сжатии в большей мере зависят от формы испытуемого образца. Иногда материал оказывается столь чувствительным к ней, что становится почти бессмысленным приводить какие-либо цифры. Хотя обращаться с величинами прочности на сжатие мы обязаны очень осторожно и это