гипотеза Праута, казалась бы, все более теряла смысл. Однако в то время, когда Ричарде проводил свои поразительно точные определения атомных весов, вновь встал вопрос о том, что следует понимать под атомным весом. И на этом этапе развития химии гипотезе Праута, как мы увидим далее, суждено было возродиться.

Рис. 9. Символы некоторых элементов и соединений, предложенные Дальтоном; 1 — водород; 3 — углерод; 4 — кислород; 15 — медь; 17 — серебро; 19 — золото; 21 — вода. Дальтон дал неверную формулу воды (НО вместо Н2О), но его формулы монооксида (25) и диоксида углерода (28) верны.

Поскольку, как выяснилось, атомные веса различных элементов взаимосвязаны не столь простым образом, как это ранее предполагалось, необходимо было выявить стандарт, исходя из которого можно было бы определять атомные веса элементов. Естественным казалось принять за единицу атомного веса атомный вес водорода, как это сделали Берцелиус и Дальтон. Но при этом атомный вес кислорода выражался неудобным нецелым числом 15.9, а ведь именно кислород обычно использовался для определения соотношений элементов в различных соединениях.

Чтобы атомный вес кислорода выражался удобным целым числом при минимальном нарушении стандарта, т. е. атомного веса водорода, атомный вес кислорода округлили и приняли равным 16.000 (вместо 15.9). Таким образом, в качестве стандарта был принят атомный вес кислорода, равный 16; атомный вес водорода при этом оказался равным 1.008. Атомный вес кислорода служил стандартом вплоть до середины XX в.

После того как атомистическая теория была принята, стало возможным изображать вещества в виде молекул, содержащих постоянное число атомов различных элементов. Вполне естественным было попытаться изобразить такие молекулы в виде набора маленьких кружков, представляющих собой атомы; при этом атомы каждого вида можно было изобразить кружками определенного типа.

Дальтон пытался ввести именно эту символику. Простым кружком он изображал атом кислорода; кружком с точкой посередине — атом водорода; кружком с вертикальной линией — атом азота; закрашенным черным кружком — атом углерода и т. д. Поскольку придумывать различные типы кружков становилось все труднее и труднее, Дальтон стал использовать начальные буквы названий элементов. Так, серу он изображал в виде кружка с буквой S, фосфор — в виде кружка с буквой P и т. д.

Берцелиус решил, что кружки излишни, достаточно лишь начальных букв. Он предложил, чтобы каждому элементу соответствовал свой особый знак, который был бы одновременно и символом элемента, и символом одиночного атома этого элемента, и в качестве такого знака предложил использовать начальную букву латинского названия элемента. (К счастью, для англоязычных народов латинское название почти всегда похоже на английское.) В тех случаях, когда названия двух или более элементов начинались с одних и тех же начальных букв, добавлялась вторая буква названия. Так появились химические символы элементов, которыми пользуются во всем мире и поныне.

Итак, химическим символом углерода, водорода, кислорода, азота, фосфора и серы стали соответственно C, H, O, N, P и S, кальций и хлор (углерод первым завладел прописной буквой C) обозначались соответственно Ca и Cl.

С помощью химических символов легко показать количество атомов в молекуле. Так, молекулу водорода, состоящую из двух атомов водорода, записывают как H2, а молекулу воды, содержащую два атома водорода и один атом кислорода,— как H2O. (Знак без числового индекса, это легко увидеть, означает единичный атом.) Углекислый газ — это CO2, серная кислота — H2SO4, а хлорид водорода — HCl. Химические формулы этих простых соединений говорят сами за себя.

Химические формулы можно объединять в химические уравнения, описывающие реакции. С помощью такого уравнения можно, например, показать, что углерод соединяется с кислородом и образует углекислый газ:

C + O2 > CO2.

В таких уравнениях, чтобы не нарушить закона сохранения массы веществ, необходимо учитывать все участвующие в реакции атомы.

Предположим, мы хотим сказать, что водород соединяется с хлором и образует хлорид водорода. Если это записать просто как

H2 + Cl2 > HCl,

то нетрудно заметить, что среди исходных веществ у нас два атома водорода и два атома хлора, а среди продуктов реакции — только по одному. Чтобы уравнять правую и левую части, перед формулами исходных веществ и продуктов реакции ставят коэффициенты. В результате реакция образования хлорида водорода записывается как

H2 + Cl2 > 2HCl,

а реакция образования воды — как

2H2 + O2 > 2H2O.

Электролиз

Изучая влияние электрического тока на химические вещества, ученые смогли выделить ряд новых элементов. Вообще за полтора века, прошедшие с того времени, когда Бойль ввел понятие «элемент» (см. гл. 3), было открыто поразительно много веществ, отвечающих этому определению. Более того, было установлено, что некоторые простые и сложные вещества содержат неоткрытые элементы, которые химики не могли пока ни выделить, ни изучить.

Очень часто эти элементы входили в состав оксидов, т. е. соединений кислорода. Чтобы выделить элемент, соединенный с кислородом, последний необходимо было удалить. В принципе под воздействием какого-либо другого элемента, обладающего более сильным сродством к кислороду, атом (или атомы) кислорода может покинуть первый элемент и присоединиться ко второму. Этот метод оказался эффективным. Причем часто роль второго, отнимающего кислород, элемента выполнял углерод. Например, если железную руду, которая по сути является оксидом железа, нагревать на коксе (относительно чистая разновидность углерода), то углерод соединяется с кислородом; при этом образуются оксиды углерода и металлическое железо.

Рассмотрим теперь известь. По своим свойствам она тоже похожа на оксид. Однако ни один из известных тогда элементов, вступая в реакцию с кислородом, не образует известь. Следовательно, известь является оксидом неизвестного элемента. Пытаясь выделить этот неизвестный элемент, известь нагревали на коксе, но при этом ничего не происходило. Неизвестный элемент, по-видимому, так крепко удерживал кислород, что атомы углерода не могли оторвать от него атомы кислорода. Ни одно другое химическое вещество также не могло «заставить» известь отдать кислород.

Однако английский химик Гемфри Дэви (1778—1829) решил, что если вещество нельзя разложить химическим путем, то, возможно, это удастся осуществить под воздействием электрического тока: ведь таким способом удалось разложить даже молекулу воды.

Дэви сконструировал электрическую батарею, в которой насчитывалось более 250 металлических пластин; это была самая сильная из имевшихся в то время батарей. Пропуская ток, который давала эта батарея, через растворы соединений, предположительно содержащих неизвестные элементы, Дэви пытался таким образом выделить эти элементы, однако успеха не добился. Он только разложил воду и получил водород и кислород.

Очевидно, необходимо было прежде удалить воду. Однако через твердые вещества ему даже не удалось пропустить ток. Наконец, Дэви догадался расплавить соединения и пропустить ток через

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату