Теплота
В XVII и XVIII вв. мир химии и мир физики разделяла четкая граница. Химия изучала процессы, сопровождающиеся изменением молекулярной структуры, в то время как физика изучала такие процессы, которые подобными изменениями не сопровождались.
В начале XIX столетия, когда Дэви (см. гл. 5) разрабатывал классификацию молекул неорганических соединений, а Бертло (см. гл. 5) — классификацию молекул органических соединений, физики изучали потоки теплоты, другими словами —
Выдающихся успехов в этой области достигли английский физик Джеймс Прескотт Джоуль (1818— 1889) и немецкие физики Юлиус Роберт Майер (1814—1878) и Герман Людвиг Фердинанд Гельмгольц (1821—1894). К 40-м годам прошлого столетия в результате проведенных ими работ стало ясно, что в процессе перехода одной формы энергии в другую энергия не создается и не исчезает. Этот принцип получил название
В своих работах французский физик Никола Леонар Сади Карно (1796—1832), английский физик Уильям Томсон, впоследствии лорд Кельвин (1824—1907), и немецкий физик Рудольф Джулиус Эмануэль Клаузиус (1822—1888) развили механическую теорию теплоты. Было показано, что при самопроизвольном переходе теплоты от точки с более высокой температурой к точке с более низкой температурой работа производится только в случае существенной разности температур, ибо часть теплоты неизбежно рассеивается в окружающую среду. Этот вывод можно обобщить и распространить на любой вид энергии.
В 1850 г. Клаузиус, пытаясь найти соотношение между количеством теплоты в изолированной системе и абсолютной температурой этой системы, ввел термин
Естественно, что такого рода открытия не могли не повлиять на развитие химии. Ведь в конечном итоге основными источниками теплоты в XIX в. (кроме Солнца) были химические реакции: горение дерева, угля и нефти. Химикам было также известно, что теплота выделяется и при других химических реакциях, например при нейтрализации кислот основаниями, и что практически все химические реакции сопровождаются тем или иным тепловым эффектом: выделением теплоты (а иногда и света) или поглощением теплоты (а иногда и света).
В 1840 г. после опубликования работ русского химика Германа Ивановича Гесса (1802—1850) [75] граница между миром физики и химии была разрушена, и началось сотрудничество двух наук. Тщательно измерив действительное количество теплоты, выделяемой в процессе химических реакций между определенными количествами веществ, Гесс показал, что количество теплоты, получаемой (или поглощаемой) при переходе от одного вещества к другому, всегда одинаково и не зависит от того, с помощью какой химической реакции или сколькими этапами осуществляется этот переход. Благодаря этому обобщению (
Исходя из закона Гесса, представлялось вполне вероятным, что закон сохранения энергии равно применим и к химическим, и к физическим процессам. И действительно, дальнейшие обобщения показали, что законы термодинамики, вероятнее всего, проявляются в химии точно так же, как и в физике.
Это направление в экспериментах и в теории привело к выводу, что определенным химическим реакциям, как и физическим процессам, присуще свойственное только им самопроизвольное направление, приводящее к увеличению энтропии. Однако энтропия представляет собой величину, трудную для непосредственного измерения, поэтому химики начали искать другой, более простой критерий.
В 60-х годах прошлого столетия Бертло, уже завоевавший известность как органик-синтетик (см. гл. 5), обратился к термохимии. Он разработал методику проведения химических реакций в замкнутых сосудах, погруженных в воду заданной температуры. Определив температуру этой воды в конце реакции, можно было установить, какое количество теплоты выделяется в ходе данной реакции.
Используя такой
Бертло полагал, что реакции, сопровождающиеся выделением теплоты, являются самопроизвольными, в то время как реакции, сопровождающиеся поглощением теплоты, таковыми не являются. Поскольку каждая реакция, в ходе которой выделяется теплота, должна сопровождаться, если заставить ее идти в обратном направлении, поглощением теплоты (первыми стали придерживаться такой точки зрения Лавуазье и Лаплас, см. гл. 4), то, следовательно, любая химическая реакция идет самопроизвольно только в одном направлении, и при этом она сопровождается выделением теплоты.
Например, когда водород взаимодействует с кислородом, образуя воду, реакция протекает с выделением большого количества теплоты. Эта реакция самопроизвольная, и, однажды начавшись, она быстро идет к завершению и иногда заканчивается сильным взрывом.
В то же время обратная реакция — расщепление воды на водород и кислород — требует затраты энергии (тепловой или, лучше, электрической). Расщепление молекулы воды не является самопроизвольным; в отсутствие энергии расщепление вообще не происходит, и уже начавшаяся реакция тотчас же прекратится, если подачу энергии прервать.
Но это правило Бертло, на первый взгляд представлявшееся вполне приемлемым, было ошибочным. Во-первых, не все самопроизвольные реакции протекают с выделением теплоты; некоторые реакции сопровождаются поглощением теплоты, и в ходе таких реакций температура среды, окружающей реакционную смесь, действительно понижается.
Во-вторых, существуют
H2 + I2 ? 2HI
(две стрелки, направленные в противоположные стороны, показывают, что реакция обратима).
Во времена Бертло обратимые реакции были уже известны. В 1850 г. Уильямсон первым тщательно изучил их. Основываясь на результатах проведенных им работ, Уильямсон (см. гл. 7) предложил структурные формулы эфиров. Он нашел условия, при которых смесь веществ A и B образовывала вещества C и D, а смесь веществ C и D образовывала вещества A и B. Однако и в том, и в другом случае в итоге получалась смесь веществ A, B, C и D, причем соотношение этих компонентов было определенным. Смесь при этом находилась в состоянии
Работа Уильямсона ознаменовала начало изучения