дорогой?
В конце XIX в. многие физики испытывали разочарование, пока один из них не нарушил общую тенденцию — это был Макс Планк из Германии. В 1900 г. Планк совершил смелый концептуальный прорыв, заявив, что старой теории необходим квантовый скачок (он заимствовал слово
Чтобы понять смысл кванта энергии, рассмотрим такую аналогию. Сравните случай шарика, катящегося по лестнице, со случаем, когда он катится по наклонной плоскости (рис. 1), на наклонной плоскости может занимать любое положение, и его положение может меняться на любую величину. Таким образом, это модель непрерывности, представляющая то, как мы думаем в классической физике. По контрасту, шарик на лестнице может находиться только на той или иной ступени; его положение (и его энергия, которая связана с положением) «квантовано».
Рнс. 1.
Вы можете возразить — что происходит, когда шарик падает с одной ступени на другую? Разве во время своего спуска он не занимает промежуточные положения? Именно здесь проявляется необычность квантовой теории. Для шарика на лестнице ответ, очевидно, должен быть положительным, но для случая квантового шарика (атома или электрона) теория Планка дает отрицательный ответ. Квантовый шарик никогда не может быть обнаружен в любом промежуточном положении между двумя ступеньками; он находится либо на одной, либо на другой. Это — квантовая прерывистость.
Итак, почему вы не можете получить загар от огня дров в камине? Представьте себе маятник на ветру Обычно в такой ситуации маятник будет раскачиваться, даже если ветер не очень сильный. Предположите, однако, что маятник может поглощать энергию только дискретными порциями большой величины. Иными словами, это квантовый маятник. Что тогда? Ясно, что если только ветер не способен давать требуемое высокое нарастание энергии за один шаг, то маятник не будет двигаться. Поглощение небольших значений энергии не позволит ему накопить достаточно энергии для преодоления порога. Так и с колеблющимися электронами в камине. В результате небольших квантовых скачков возникает низкочастотное излучение, но для высокочастотного излучения требуются большие квантовые скачки. Большой квантовый скачок должен вызываться большим количеством энергии в среде, окружающей электрон; энергия дров, горяших в камине, просто недостаточно сильна, чтобы создавать условия для выделения большого количества голубого света, не говоря уже об ультрафиолете. Вот по какой причине нельзя загореть, сидя у камина.
Насколько известно, Планк был довольно традиционным ученым и с неохотой обнародовал свои идеи относительно квантов энергии. Он даже занимался своей математикой стоя, как в то время было принято в Германии. Ему не особенно нравились следствия его новаторской идеи; однако ученым, которым предстояло продвинуть революцию намного дальше, становилось ясно, что они указывают на совершенно новый способ понимания нашей физической реальности.
Одним из этих революционеров был Альберт Эйнштейн. В то время когда он опубликовал свою первую исследовательскую статью по квантовой теории, он работал клерком в патентном бюро в Цюрихе (1900). Подвергнув сомнению популярное в то время представление о волновой природе света, Эйнштейн выдвинул гипотезу, что свет существует в идее кванта — дискретного пучка энергии, — который мы теперь называем фотоном. Чем выше частота света, тем большую энергию имеет каждый пучок.
Еще большим революционером был датский физик Нильс Бор, который в 1913 г. использовал идею кванта света для формулировки гипотезы, согласно которой весь мир атома полон квантовых скачков. Нас всех учили, что атом похож на миниатюрную солнечную систему, что электроны вращаются вокруг ядра во многом подобно тому, как планеты вращаются вокруг Солнца. Возможно, вам будет интересно узнать, что эта модель, предложенная английским физиком Эрнстом Резерфордом, имела решающий недостаток, который устраняла работа Бора.
Представьте себе рой движущихся по орбитам спутников, которые довольно регулярно запускают с Земли с помощью космических ракет. Эти спутники существуют не вечно. Вследствие столкновения с земной атмосферой, они теряют энергию и замедляют свое движение. Их орбиты сужаются, и, в конечном счете, они падают на Землю (рис. 2).
Рис. 2.
Согласно классической физике, электроны, окружающие атомное ядро, тоже должны были бы терять энергию вследствие непрерывного излучения света и в конце концов падать на ядро. Поэтому планетарная модель атома неустойчива. Однако Бор (который, предположительно, увидел планетарную систему атома во сне) создал устойчивую модель атома, применив идею квантового скачка.
Предположим, говорил Бор, что орбиты электронов дискретны, подобно квантам энергии Планка. Тогда орбиты можно представлять себе как образующие энергетическую лестницу (рис. 3). Они стационарны — величина их энергии остается неизменной. Находясь на этих квантованных орбитах, электроны не излучают света. Электрон испускает квант света, только когда перескакивает с орбиты с более высокой энергией на орбиту с более низкой (со ступени лестницы с более высокой энергией на более низкую ступень). Таким образом, если электрон находится на орбите с самой низкой энергией, у него нет более низкого уровня, куда бы он мог перескакивать. Эта конфигурация базового уровня устойчива, и у электрона нет никаких шансов упасть на ядро. Все физики встретили модель атома Бора вздохом облегчения.
Рис. 3.
Бор отсек голову Гидре неустойчивости, но на ее месте вырастала другая. Согласно Бору, электрон никогда не может занимать никакое положение между орбитами; таким образом, совершая скачок, он должен каким-то образом непосредственно переходить на другую орбиту. Это не орбитальный прыжок через пространство, а что-то радикально новое. Хотя, возможно, было бы соблазнительно изображать скачок электрона как прыжок с одной ступеньки лестницы на другую, однако электрон совершает скачок, не пересекая пространство между ступеньками. Вместо этого он как будто исчезает на одной ступеньке, снова появляясь на другой — без какого бы то ни было непрерывного перехода. Больше того, нельзя сказать, куда он собирается перескакивать, если существует больше одной более низкой ступени, между которыми он может выбирать. Можно давать лишь вероятностные предсказания.