Мах и смысл пространства
Когда я был подростком, во время прогулок по улицам Манхэттена мы с отцом обычно играли в такую игру. Один из нас незаметно останавливал свой взгляд на чём-то — проезжающем автобусе, голубе, севшем на подоконник, человеке, выронившем монету, — и описывал, как происходящее видится с необычной точки зрения колеса автобуса, летящего голубя или падающей монеты. Задача состояла в том, чтобы по загадочному описанию типа «Я передвигаюсь по тёмной цилиндрической поверхности, окружённой низкими неровными стенами, а с неба спускается огромный пучок толстых белых завитков» догадаться, что это точка зрения муравья, ползущего по хот-догу, на который уличный продавец кладёт гарнир из квашеной капусты. Хотя мы перестали играть в эту игру задолго до того, как я начал изучать физику, эта игра, по крайней мере отчасти, была виновна в том, что я испытал сильную неудовлетворённость, когда встретился с законами Ньютона.
Игра поощряла видение мира с различных точек зрения и подчёркивала, что какая-то точка зрения столь же законна, как и любая другая. Но, согласно Ньютону, хотя вы, несомненно, вольны выбирать любую точку зрения на мир, разные точки зрения не являются одинаково хорошо обоснованными. С точки зрения муравья, сидящего на коньке фигуриста, вращаются лёд и каток; с точки зрения зрителя с трибуны — вращается фигурист. Эти две разные точки зрения выглядят совершенно равноправными, имеющими под собой равное основание и устанавливающими симметричную связь, в которой всё одинаково вращается по отношению друг к другу. И всё же, согласно Ньютону, одна из этих точек зрения более правильна, чем другая, так как если
Гораздо позже я узнал, что в последние несколько столетий многие физики и философы — иногда шумно, иногда тихо — бились над тем же самым вопросом. Хотя казалось, ньютоновское ведро явно указывает на то, что именно абсолютное пространство определяет по-настоящему законную точку зрения (если что-то или кто-то вращается по отношению к абсолютному пространству, тогда это что-то или кто-то
За столетия, прошедшие после работы Ньютона, эти вопросы изредка обсуждались, но только в середине XIX в., когда проблемой абсолютного пространства занялся австрийский физик и философ Эрнст Мах, был предложен новый, смелый и проницательный взгляд на пространство — и этот взгляд, среди прочего, в дальнейшем оказал глубокое влияние на Альберта Эйнштейна.
Чтобы понять точку зрения Маха — или, точнее, наше современное прочтение идей, часто приписываемых Маху,[7] — давайте на минутку вернёмся к ньютоновскому ведру. Дело в том, что в аргументации Ньютона кое-что не учтено. В эксперименте с ведром требуется объяснить, почему поверхность воды плоская в одном случае и вогнутая в другом. В поисках объяснения мы рассмотрели две ситуации и поняли, что главное отличие состояло в том, вращалась вода или нет. Естественно, мы пытались объяснить форму поверхности воды состоянием её движения. Но вот в чём дело: перед введением абсолютного пространства Ньютон рассматривал только ведро в качестве возможной системы отсчёта для определения движения воды и, как мы видели, этот подход потерпел неудачу. Но есть и другие системы отсчёта, по которым можно судить о движении воды; такую систему отсчёта можно связать, например, с лабораторией, в которой проходит эксперимент, — с её полом, потолком и стенами. Или, если мы проводим эксперимент солнечным деньком в открытом поле, то в качестве «стационарной» системы отсчёта для определения того, вращается ли вода, можно взять окружающие здания или деревья либо почву под нашими ногами. А если мы вдруг решим провести такой эксперимент в открытом космосе, то в качестве стационарной системы отсчёта можно взять далёкие звёзды.
Это ведёт к следующему вопросу. Может быть Ньютон, чересчур легко отбросил ведро в качестве подходящей системы отсчёта, что помешало ему обратить внимание на то относительное движение, которое мы способны наблюдать в обыденной жизни, — такое как относительное движение между водой и лабораторией, или водой и землёй, или водой и неподвижными звёздами на небе? Возможно ли, что такое относительное движение
Чтобы лучше понять точку зрения Маха, вообразите, что вы находитесь в открытом космосе, с ощущением тишины, неподвижности и невесомости. Вы осматриваетесь и видите далёкие звёзды, и они тоже кажутся вам совершенно неподвижными. (Настоящий момент дзен-буддизма.) Затем кто-то, проплывая мимо, толкает вас, и вы начинаете вращаться. Вы заметите две вещи. Во-первых, вы почувствуете, как ваши руки и ноги начнёт тянуть в разные стороны, и если вы не будете сопротивляться, они раскинутся. Во-вторых, далёкие звёзды уже больше не будут выглядеть неподвижными: они будут казаться описывающими огромные окружности. Вы обнаружите тесную связь между ощущаемой вами силой и движением далёких звёзд. Запомним это, поскольку мы проведём тот же эксперимент, но в других условиях.
Теперь представьте, что вы находитесь в