оказываемся в совершенно иной ситуации. У 3-браны три измерения, так что будь она большой — возможно, бесконечно протяжённой во всех трёх направлениях — она бы
Отсюда возникает интригующая возможность. Не живём ли мы сами внутри 3-браны? Не уподобляемся ли мы Белоснежке, чей мир ограничивается двумерным экраном — 2-браной, которая сама пребывает внутри трёхмерной Вселенной (внутри трёх пространственных измерений кинотеатра)? Не может ли быть так, что всё известное нам существует внутри трёхмерного экрана — 3-браны, которая сама пребывает внутри Вселенной более высокой размерности, описываемой теорией струн / M-теорией? Не может ли оказаться так, что то, что Ньютон, Лейбниц, Мах и Эйнштейн называли трёхмерным пространством, является на самом деле особой трёхмерной сущностью теории струн / M-теории? Или, переходя на язык теории относительности, не может ли быть так, что четырёхмерное пространство-время, разработанное Минковским и Эйнштейном, является на самом деле следом или траекторией 3-браны, разворачивающейся во времени? Короче говоря, не может ли известная нам Вселенная быть браной?{175}
Возможность того, то мы живём внутри 3-браны (так называемый
Липкие браны и колеблющиеся струны
Один из мотивов введения термина «M-теория» состоит в том, что, как мы теперь видим, название «теория струн» подчёркивает лишь один из множества объектов теории. Одномерные струны были обнаружены в теоретических исследованиях за десятилетия до того, как более тонкий анализ обнаружил существование бран более высокой размерности, так что «теория струн» — в чём-то устаревшее название. Однако, хотя M-теория и устанавливает своего рода «демократию» среди многообразия объектов различной размерности, но струны всё же играют главную роль в нашей современной формулировке. Одна из причин сразу же ясна. Можно игнорировать все
В 1995 г., вскоре после того как Виттен объявил о своём открытии, Джозеф Польчински из Калифорнийского университета в Санта-Барбаре получил богатую пищу для размышлений. Несколькими годами ранее в статье, написанной совместно с Робертом Леем и Джином Даем, Польчински обнародовал интересное и загадочное свойство теории струн. Мотивировки и рассуждения Польчински были несколько техническими, но детали для нас не важны, а результаты таковы. Он обнаружил, что в определённых ситуациях концы открытых струн (напомним, что такие струны представляют собой отрезки с двумя свободными концами) не могут двигаться как им угодно. Подобно тому как бусинка на проволочке может свободно двигаться, но при своём движении вынуждена повторять контур проволоки, и подобно тому как пинбольный шарик свободен в своём движении, но должен повторять контуры поверхности пинбольного стола, так и концы незамкнутой струны могут свободно двигаться, но ограничены в своём движении определёнными формами или контурами в пространстве. Польчински с соавторами показал, что хотя струна всё ещё вольна колебаться, но её концы будут «приклеены» к определённым областям или «захвачены» ими.
В одних ситуациях эта область может быть одномерной, и тогда концы струны уподобляются двум бусинкам, скользящим по проволоке, а сама струна — ниточке, связывающей их. В других ситуациях эта область может быть двумерной, и тогда концы струны уподобляются двум пинбольным мячам, связанным одной нитью и катающимся по пинбольному столу. Ещё в других ситуациях область может иметь три, четыре или любое число пространственных измерений не выше девяти. Эти результаты, как показал Польчински, а также Пётр Хоржава и Майкл Грин, помогли решить давнюю загадку, возникающую при сравнении замкнутых и незамкнутых струн, но в течение ряда лет эта работа привлекала мало внимания.{176} Всё изменилось в октябре 1995 г., когда Польчински закончил пересмотр этих ранних результатов в свете новых открытий Виттена.
Работа Польчински оставляла без ответа следующий вопрос, который, возможно, возник у вас при чтении предыдущего абзаца: если концы незамкнутых струн удерживаются внутри определённой области пространства, то
Чтобы получить более ясное представление, взглянем на рис. 13.2. На рис. 13.2



Рис. 13.2. (
Работа Польчински как нельзя кстати подошла к открытию Виттена, вызвавшему вторую революцию в теории суперструн. В то время как некоторые из величайших умов в теоретической физике XX в. тщетно пытались сформулировать теорию, содержащую фундаментальные объекты с бо?льшим числом измерений, чем точки (нульмерные) или струны (одномерные), результаты Виттена и Польчински, дополненные важными достижениями множества современных ведущих исследователей, открыли путь к прогрессу в этом направлении. Эти физики не только установили, что теория струн / M-теория содержит объекты более высокой размерности, но результаты Польчински, в частности, дали средства для теоретического анализа их детальных физических свойств (если будет доказано их существование). Польчински показал, что