поскольку невозможно одновременно измерить и определённое положение и определённую скорость. Причина, по который мы не считаемся с такой неточностью, состоит в том, что на повседневном уровне степень неопределённости ничтожна и практически всегда незаметна. Принцип Гейзенберга не просто декларирует неопределённость, но и точно определяет минимальную
Объяснение неопределённости как проявления неизбежного возмущения, возникающего в ходе измерений, даёт полезное интуитивное понимание и мощное средство объяснения явлений в конкретных ситуациях. Но это объяснение может и вводить в заблуждение. Оно может породить впечатление, что неопределённость возникает только когда наши неуклюжие эксперименты вмешиваются в происходящее. Это неверно. Неопределённость присуща волновой природе квантовой механики и существует независимо от того, проводим ли мы свои грубые измерения. В качестве примера взглянем на совсем простую вероятностную волну частицы, аналог мягко перекатывающейся океанской волны, показанную на рис. 4.6. Поскольку все гребни этой волны одинаково двигаются в одном направлении, можно предположить, что эта волна описывает частицу, двигающуюся с постоянной скоростью, равной скорости гребней волны; эксперимент подтверждает это предположение. Но где же находится частица? Поскольку волна однородно распределена по всему пространству, то нет никаких выделенных точек, и у нас нет никаких оснований утверждать, что электрон находится где-то
Рис. 4.6. Волна вероятности с точно повторяющейся последовательностью одинаковых гребней и впадин соответствует частице с точно определённой скоростью. Но поскольку все гребни и впадины совершенно одинаковы, то положение частицы оказывается совершенно неопределённым. С равной вероятностью она может быть где угодно
Аналогичное рассуждение применимо ко всем другим формам волн, хотя конкретные детали могут быть более сложными. В целом урок понятен: в квантовой механике неопределённость просто существует, и всё.
Эйнштейн, неопределённость и вопрос реальности
Важный вопрос, который уже мог прийти вам на ум, заключается в том, отражает ли принцип неопределённости то, что мы можем знать о реальности, или саму реальность? Имеют ли все объекты Вселенной на самом деле определённое положение и скорость, как мы себе обычно представляем в повседневной жизни (взлетающий бейсбольный мяч, бегун на дорожке, подсолнух, медленно поворачивающийся вслед за Солнцем), но квантовая неопределённость говорит нам, что в принципе невозможно знать эти характеристики одновременно? Или же квантовая неопределённость полностью разрушает наши классические представления, утверждая, что неверен классический перечень атрибутов, приписываемый нами реальности, и начинающийся с положения и скорости объектов? Говорит ли квантовая неопределённость о том, что в любой заданный момент времени частицы просто не имеют определённого положения и определённой скорости?
Для Бора эта проблема была чем-то вроде коана дзен-буддизма.[26] Физика имеет дело только с тем, что можно измерить. С точки зрения физики это и
Целью статьи Эйнштейна–Подольского–Розена было показать, что хотя квантовая механика, безусловно, успешно предсказывает и объясняет результаты измерений, но она не может быть последним словом в физике микромира. Их стратегия была проста: они хотели показать, что каждая частица на самом деле имеет определённое положение и определённую скорость в любой заданный момент времени, откуда следовало бы, что принцип неопределённости выражает фундаментальную ограниченность подхода квантовой механики. Если каждая частица занимает определённое положение и имеет определённую скорость, но квантовая механика не в состоянии определить их одновременно, значит она даёт лишь частичное описание Вселенной. Поэтому квантовая механика является неполной теорией физической реальности и, возможно, лишь верстовым столбом на пути к более глубокой теории, которую ещё предстоит открыть. В действительности, как мы увидим, они заложили фундамент для демонстрации кое-чего ещё более грандиозного: нелокальности квантового мира.
Работа Эйнштейна, Подольского и Розена (ЭПР) была отчасти вызвана грубым объяснением, которое дал Гейзенберг принципу неопределённости: измеряя положение чего-либо, вы неизбежно вносите возмущение в движение и, тем самым, лишаете себя возможности одновременно точно определить скорость этого объекта. Хотя, как мы видели, квантовая неопределённость носит более общий характер, чем это объясняется с помощью «возмущения», Эйнштейн, Подольский и Розен изобрели нечто, что, должно было бы убедительно и хитроумно устранить
Эйнштейн с коллегами применил аналогичный подход к квантовой области. При некоторых хорошо изученных физических процессах из одного места могут испускаться две частицы с характеристиками, которые соотносятся примерно тем же способом, как движение Рода и Тодда. Например, если одна частица распадается на две частицы одинаковой массы, разлетающиеся в противоположных направлениях (подобно