Теперь каждая титановая коробочка имеет не одну, а три дверки: одну сверху, одну сбоку и одну спереди.{52} Сопроводительное письмо извещает, что теперь при открытии любой из трёх дверок коробочки находящийся внутри неё шарик вспыхивает случайным образом либо синим, либо красным цветом. Если на той же коробочке открывается другая дверка (например, верхняя вместо боковой или передней), то шарик может случайным образом вспыхнуть другим цветом. Но когда уже открыта одна дверка и шарик вспыхнул каким-то цветом, то невозможно определить, какой был бы цвет шарика, если бы мы открыли другую дверку. (Это свойство соответствует квантовой неопределённости: точно измерив одну характеристику, вы ничего не можете сказать относительно других). Наконец, в письме говорится, что снова имеется таинственная связь, странное сцепление между двумя наборами титановых коробочек: несмотря на то что все шарики случайным образом выбирают свой цвет при открытии одной из трёх дверок своей коробочки, если Малдер и Скалли откроют
Хотя Малдер и Скалли поставлены в несколько более сложную ситуацию, чем раньше, но на первый взгляд кажется, что прежние аргументы Скалли подойдут и здесь.
«Малдер, — говорит Скалли, — это столь же глупо, как в прошлый раз. И здесь нет тайны. Шарики внутри каждой коробочки можно просто запрограммировать. Ты не находишь?»
«Но теперь тут три дверки, — возражает Малдер, — так что шарик не может “знать”, какую дверку мы откроем, верно?»
«А ему и не нужно гадать, — объясняет Скалли. — Всё это запрограммировано. Возьмём, к примеру, следующую неоткрытую коробочку под номером 37. Представь себе, что шарик в моей коробочке 37 запрограммирован, скажем, вспыхнуть красным цветом, если открыта верхняя дверка, синим цветом, если открыта боковая, и снова красным, если открыта передняя дверка. Я называю это программу
Но Малдер не верит в то, что шарики запрограммированы. Он верит письму. Он верит, что шарики случайным образом выбирают между красным и синим цветом при открытии одной из дверок, так что между его коробочками и коробочками Скалли
Кто же прав? Поскольку невозможно изучить шарики перед или во время предполагаемого случайного выбора цвета (помните, что любая такая попытка приведёт к тому, что шарик немедленно выберет себе цвет случайным образом), то кажется невозможным установить, кто прав — Малдер или Скалли.
Однако примечательно, что после небольшого раздумья Малдер понимает, что
Малдер понимает, что он и Скалли до сих пор рассматривали лишь то, что произойдёт, если они будут открывать одинаковые дверки в коробочках с одинаковыми номерами. Перезвонив Скалли, он взволнованно объясняет ей, что можно узнать кое-что важное, если они будут выбирать дверки случайным образом и независимо друг от друга, а не открывать всегда одинаковые дверки.
«Малдер, пожалуйста, дай мне насладиться своим отпуском. Что мы можем узнать таким образом?»
«Скалли, мы сможем рассудить, кто из нас прав».
«Ладно, я слушаю».
«Всё очень просто, — продолжает Малдер. — Вот что я понял. Если ты права, то, открывая двери одинаковых коробок случайным образом и независимо друг от друга, мы обнаружим, что
«В самом деле, почему так?» — немного заинтересовалась Скалли.
«Вот пример, — продолжает Малдер. — Предположим, ты права, и каждый шарик действует в соответствии с программой. Пусть к примеру, какая-то коробочка запрограммирована так, что при открытии верхней, боковой и передней дверок появляются
«Да, конечно, — перебивает Скалли. — Если мы припишем верхней дверке номер 1, боковой — номер 2, а передней — 3, то получается ровно девять комбинаций выбора дверок: (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2) и (3, 3)».
«Да, всё верно, — продолжает Малдер. — Теперь важный момент: пять из девяти комбинаций дверок — (1, 1), (2, 2), (3, 3), (1, 2) и (2, 1) — соответствуют тому, что открыв свои дверки, мы увидим один и тот же цвет. В первых трёх вариантах мы выбираем одинаковые дверки, а тогда, как мы знаем, мы
«Но подожди, — протестует Скалли. — В твоём примере все коробочки запрограммированы одинаково:
«На самом деле это не имеет значения. Вывод справедлив для любых вариантов программ. Смотри, мои рассуждения с вариантом
Таковы аргументы. Трудная часть наших рассуждений позади. Суть в том, что