был разработан умелым инженером и изготовлен талантливым механиком, которые способны создавать нечто такого высокого порядка потому, что они сами являются высоко организованными формами жизни. И снова мы последовательно сводим их высокую организацию к высокоупорядоченному началу Вселенной.
Важное утверждение
Откровение, к которому мы пришли, заключается в том, что мы можем доверять нашей памяти о прошлом с более низкой, а не более высокой энтропией, только если Большой взрыв — процесс, событие или явление, которое привело Вселенную к существованию, — дал старт Вселенной в очень специфическом, высокоупорядоченном состоянии с низкой энтропией. Без этого важного добавления наши ранние рассуждения, что энтропия должна расти как в будущее, так и в прошлое от любого заданного момента, приводят к заключению, что весь порядок, который мы видим, возник из случайной флуктуации обыкновенного неупорядоченного состояния высокой энтропии, а это заключение, как мы уже видели, подрывает сами рассуждения, на которых оно основано. Но, включая в наш анализ маловероятную низкоэнтропийную начальную точку Вселенной, мы теперь видим, что правильное заключение состоит в том, что энтропия растёт по направлению в будущее, поскольку вероятностные рассуждения полностью и без ограничений работают в этом направлении; но энтропия не растёт в прошлое, поскольку
Последняя загадка
То, что ранняя Вселенная задаёт направление стреле времени, является чудесным заключением, вызывающим глубокое удовлетворение, но мы ещё не закончили. Одна огромная загадка осталась. Как получилось, что Вселенная началась с такой высокоупорядоченной конфигурации, что она организовала вещи так, что на протяжении миллиардов лет, через конфигурации с постоянно уменьшающимся порядком, всё эволюционировало в направлении к более и более высокой энтропии? Заметьте, насколько это поразительно. Как мы отмечали, с точки зрения вероятности намного более естественным было бы, что частично растаявшие кубики льда, которые вы видели в 10:30 вечера, стали такими в результате статистической флуктуации, возникшей в стакане жидкой воды, а не начались с ещё менее вероятного состояния полностью сформированных кубиков льда. А что верно для кубиков льда, то в несметное количество раз ещё более верно для целой Вселенной. Говоря на языке вероятности, в захватывающей дух степени более вероятно, что всё, что мы сейчас видим во Вселенной, возникло из редкого статистического отклонения от полного беспорядка, а не медленно эволюционировало из ещё более маловероятной, неправдоподобно более упорядоченной, поразительно низкоэнтропийной стартовой точки, которую требует Большой взрыв.{84}
И ещё, когда мы разбирались со случайностями и представляли, что всё скачком возникло за счёт статистической флуктуации, мы оказались в затруднительном положении: такой подход ставит под сомнение сами законы физики. Так мы решили не полагаться на случайность и пришли к низкоэнтропийному Большому взрыву как к объяснению стрелы времени. Теперь загадка состоит в том, как объяснить, почему Вселенная началась с такой маловероятной, высокоупорядоченной конфигурации.
Мы будем заниматься детальным обсуждением космологии в главах с 8 по 11, но сначала отметим, что в нашем обсуждении времени имеется серьёзный недостаток: всё, что мы говорили, основывалось исключительно на классической физике. Теперь рассмотрим, как квантовая механика влияет на понимание времени и на наши поиски его стрелы.
Глава 7. Время и кванты
Как царство квантов помогает понять суть времени
Когда мы думаем о чём-то, подобном времени, о чём-то, внутри чего мы находимся, о чём-то, что полностью входит в наше повседневное существование, о чём-то настолько всепроникающем, что невозможно изъять — даже на мгновение — из общепринятого языка, то наши рассуждения формируются под определяющим влиянием наших ощущений. Эти повседневные ощущения являются классическими; с высокой степенью точности они соответствуют законам физики, установленным Ньютоном более чем три столетия назад. Но из всех открытий в физике за последнюю сотню лет квантовая механика является самым поразительным, поскольку она подрывает всю концептуальную схему классической физики.
Так что стоит расширить наши классические представления и рассмотреть некоторые эксперименты, которые обнаруживают удивительные особенности того, как разворачиваются во времени квантовые процессы. Мы продолжим обсуждать темы предыдущей главы в этом более широком контексте и зададимся вопросом, имеется ли стрела времени в квантово-механическом описании природы. Мы получим ответ, который вызывает споры даже среди физиков. И он снова вернёт нас к вопросу о происхождении Вселенной.
Прошлое согласно квантовой теории
В предыдущей главе вероятность играла центральную роль, однако я несколько раз акцентировал внимание на том, что она возникает только вследствие практического удобства и полезности предоставляемой ею информации. Отслеживание точного движения 1024 молекул H2O в стакане воды выходит далеко за рамки наших вычислительных возможностей, и, даже если бы это было возможно, что мы стали бы делать с итоговой горой данных? Определить по списку, содержащему 1024 положений и скоростей, присутствовали ли кубики льда в стакане, — это непомерно сложная задача. Так что вместо этого мы обращаемся к вероятностным рассуждениям, доступным для вычислений и, более того, имеющим дело с макроскопическими свойствами (порядок против беспорядка; например, лёд против воды), которыми мы обычно и интересуемся. Но имейте в виду, при этом не подразумевается, что вероятность фундаментально вшита в ткань классической физики. В принципе, если бы мы точно знали, как вещи ведут себя в настоящий момент, — знали бы положения и скорости каждой отдельной частицы, составляющей Вселенную, — то классическая физика говорит, что мы могли бы использовать эту информацию для предсказания, как вещи будут себя вести в любой заданный момент в будущем или как они себя вели в любой заданный момент в прошлом. Будете вы на самом деле следить за их развитием момент за моментом или нет, но в соответствии с классической физикой вы можете говорить