максвелловская теория электромагнетизма? почему теория Янга–Миллса сильных и слабых ядерных сил (которую мы коротко рассмотрим)? Один важный ответ состоит в том, что эти теории дают предсказания, которые раз за разом подтверждаются точными экспериментами. Это существенно для доверия, которое физики испытывают к этим теориям, но за кадром остаётся нечто важное.

Физики также верят этим теориям, потому что в некотором трудно объяснимом смысле они это непосредственно ощущают, и идея симметрии существенна для этого ощущения. Непосредственно ощущается, что во Вселенной нет места, которое как-то специально выделено по сравнению с любым другим, поэтому физики доверяют утверждению, что трансляционная симметрия должна быть среди симметрий законов природы. Непосредственно ощущается, что нет выделенного движения с постоянной скоростью, поэтому физики доверяют утверждению, что специальная теория относительности, полностью отражая симметрию между всеми наблюдателями, движущимися с постоянной скоростью, является существенной частью законов природы. Более того, непосредственно ощущается, что любая точка отсчёта для наблюдения — независимо от её возможного ускоренного движения — должна быть так же применима, как и любая другая, так что физики верят, что общая теория относительности, простейшая теория, включающая эту симметрию, находится среди глубоких истин, управляющих природными явлениями. И, как мы скоро увидим, теории трёх сил, отличных от гравитации, — электромагнетизма, сильного и слабого ядерных взаимодействий — основываются на других, несколько более абстрактных, но равно убедительных принципах симметрии. Так что симметрии природы не являются просто следствиями законов природы. С нашей современной точки зрения симметрии являются почвой, из которой произрастают законы.

Симметрия и время

Кроме своей роли в определении характера законов, управляющих силами природы, идеи симметрии жизненно важны и для концепции самого времени. Никто пока не нашёл ясного, фундаментального определения времени, но, несомненно, часть роли времени в структуре космоса заключается в том, что оно является счетоводом изменений. Мы ощущаем, что время пролетело, замечаем, что вещи теперь отличаются от того, какими они были раньше. Часовая стрелка на часах указывает на другую цифру, солнце занимает на небе другое положение, страницы в непереплетённом экземпляре книги «Война и мир» стали более перемешанными, углекислый газ, который вырвался из бутылки колы, занял больший объём, — всё это говорит о том, что вещи изменились, и время есть то, что обеспечивает возможность осуществления таких изменений. Перефразируя Джона Уилера, время есть способ природы удержания всего — т. е. всех изменений — так, чтобы всё не произошло сразу.

Таким образом, существование времени связано с отсутствием определённой симметрии: вещи во Вселенной должны изменяться от момента к моменту, для того чтобы мы вообще могли определить понятие от момента к моменту, которое как-то представляет наше интуитивное представление времени. Если имеется полная симметрия между существующим положением вещей, и тем, что было, и изменения от момента к моменту имеют не больше последствий, чем изменения при повороте бильярдного шара, время, в нашем обычном представлении, не могло бы существовать.{103} Это не означает, что экспансия пространства-времени, схематически показанная на рис. 5.1, не могла бы существовать — она могла бы. Но, поскольку вдоль оси времени всё было бы совершенно однородно, не было бы никакого смысла, в котором Вселенная эволюционирует или изменяется. Время было бы абстрактным свойством такой арены реальности — четвёртым измерением в пространственно-временно?м континууме, — но, с другой стороны, оно было бы нераспознаваемым.

Тем не менее, хотя существование времени равнозначно отсутствию некоторой определённой симметрии, его применение в космических масштабах требует от Вселенной уважительно относиться к другой симметрии. Идея проста и отвечает на вопрос, который мог появиться у вас при чтении главы 3. Если теория относительности учит нас, что течение времени зависит от того, как быстро вы двигаетесь, и от гравитационного поля, в котором вы находитесь, тогда что должны означать слова астрономов и физиков о всей Вселенной, имеющей определённый возраст — возраст, который в наши дни оценивается приблизительно в 14 млрд лет? 14 млрд лет по отношению к кому? 14 млрд лет по каким часам? Придут ли существа, живущие в далёкой галактике Головастика, к заключению, что Вселенной 14 млрд лет, и если так, что будет гарантировать, что их часы тикают синхронно нашим? Ответ связан с симметрией — симметрией в пространстве.

Если бы ваши глаза могли видеть свет, длина волны которого значительно больше, чем у оранжевого или красного света, вы могли бы не только видеть внутренности вашей микроволновой печки в момент её включения, но также видели бы слабое и почти однородное зарево на том, что мы воспринимаем как тёмное ночное небо. Более сорока лет назад учёные открыли, что Вселенная наполнена микроволновым излучением — светом с большой длиной волны, — которое является холодным остатком жарких условий сразу после Большого взрыва.{104} Это космическое микроволновое фоновое излучение совершенно безопасно. Раньше оно было значительно горячее, но в ходе эволюции и расширения Вселенной плотность излучения постепенно снижалась и температура падала. Сегодня его температура составляет всего около 2,7° выше абсолютного нуля, и самое заметное его проявление в качестве источника неприятностей заключается в его вкладе в небольшую часть «снега», который вы видите по телевизору при отключённом кабеле или при настройке на канал, по которому не ведётся вещание.

Но эти слабые радиопомехи дают астрономам то же, что кости тираннозавров дают палеонтологам: окно в ранние эпохи, которое играет ключевую роль в реконструкции того, что происходило в удалённом прошлом. Существенное свойство излучения, обнаруженное точными спутниковыми измерениями на протяжении последнего десятилетия, состоит в том, что оно предельно однородно. Температура излучения в одной части неба отличается от температуры в другой части неба менее чем на тысячную долю градуса. На земле такая симметрия сделала бы телевизионные каналы с прогнозом погоды неинтересными. Если в Джакарте 30°C, вы бы знали наверняка, что в Аделаиде, Шанхае, Кливленде, Анкоридже и где угодно температура будет между 29,999°C и 30,001°C. Наоборот, в космических масштабах однородность температуры излучения чрезвычайно интересна, так как она позволяет прийти к двум очень важным выводам.

Во-первых, она обеспечивает наблюдательное свидетельство того, что на ранних этапах развития Вселенная не была заполнена большими и тяжёлыми высокоэнтропийными скоплениями материи, такими как чёрные дыры, поскольку такая неоднородная среда должна была бы оставить отпечаток неоднородности и на излучении. Наоборот, однородность температуры излучения подтверждает, что молодая Вселенная была однородной; и, как мы видели в главе 6, однородность означает низкую энтропию, если гравитация играет важную роль, — как это и было в ранней плотной Вселенной. И это хорошо, поскольку наше обсуждение стрелы времени существенно опиралось на то, что Вселенная стартовала с низкой энтропией. Продвинуться в объяснении этого наблюдения как можно дальше — это одна из наших целей в этой части книги. Мы хотим понять, как могло возникнуть однородное, низкоэнтропийное и очень маловероятное, состояние ранней Вселенной. Это позволит нам сделать большой шаг к пониманию причин стрелы времени.

Во-вторых, хотя Вселенная эволюционировала после Большого взрыва, в среднем эволюция должна была быть почти одинаковой в разных местах космоса. Ввиду того что температуры здесь, и в галактике Водоворот, и в скоплении галактик Волосы Вероники, и где угодно ещё согласуются с точностью до четвёртого знака после запятой, физические условия в каждой области пространства должны изменяться после Большого взрыва существенно одинаковым образом. Это важный вывод, но нужно правильно его интерпретировать. Взгляд на ночное небо определённо показывает разнообразие космоса: различные планеты и звёзды разбросаны там и тут по пространству. Суть, однако, в том, что когда мы анализируем эволюцию целой Вселенной, мы рассматриваем макроскопическую перспективу, которая получается усреднением по этим «мелкомасштабным» отклонениям, и крупномасштабные средние оказываются почти

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату