нежного» источника света, который бы оказывал меньшее влияние на его дальнейшее движение? С точки зрения физики XIX в. это вполне возможно. Используя всё более слабую лампу (и всё более чувствительный датчик светового излучения), мы можем оказывать исчезающе малое влияние на движение электрона. Но квантовая механика демонстрирует изъян в наших рассуждениях. Известно, что уменьшая интенсивность источника света, мы уменьшаем количество испускаемых фотонов. Когда мы дойдём до излучения отдельных фотонов, мы уже не сможем далее уменьшать интенсивность света без того, чтобы не выключить его совсем. Это фундаментальный квантово-механический предел «нежности» нашего исследования. Таким образом, всегда существует минимальное возмущение, которое мы вносим в движение электрона путём измерения его положения.
Что ж, всё это верно. Однако закон Планка говорит, что энергия единичного фотона пропорциональна его частоте (и обратно пропорциональна длине волны). Следовательно, используя свет всё меньшей и меньшей частоты (и, соответственно, всё большей длины волны), мы можем делать отдельные фотоны всё более «нежными». Однако и здесь есть загвоздка. Когда волна направляется на объект, получаемая информация будет достаточной для того, чтобы определить положение объекта с некоторой
Таким образом, мы сталкиваемся со своего рода квантово-механической компенсацией. Если мы используем высокочастотный свет (малой длины волны), мы можем с высокой точностью определить положение электрона. Но высокочастотные фотоны несут очень большое количество энергии и поэтому вносят большие возмущения в скорость движения электронов. Если мы используем низкочастотный свет (большой длины волны), мы минимизируем его влияние на движение электрона, поскольку фотоны, составляющие этот свет, имеют относительно низкую энергию, но в этом случае мы вынуждены пожертвовать точностью определения положения электрона. Гейзенберг выразил всё это в виде математического соотношения между точностью измерения положения электрона и точностью определения его скорости. Он установил, что эти величины обратно пропорциональны друг другу: большая точность в определении положения неизбежно ведёт к большей погрешности в определении скорости, и наоборот. Что ещё более важно, хотя мы и ограничили наше обсуждение одним конкретным способом определения местоположения электрона, согласно Гейзенбергу компромисс между точностью определения положения и скорости является фундаментальным фактом, который остаётся справедливым независимо от используемого оборудования и метода измерения. В отличие от теорий Ньютона и даже Эйнштейна, в которых движущаяся частица описывается её положением и скоростью, согласно квантовой механике на микроскопическом уровне
Эйнштейн пытался минимизировать этот отход от позиций классической физики, утверждая, что хотя квантовая механика определённо ставит предел нашему
В действительности происходит так: если вы поместите электрон в большую коробку и затем начнёте медленно сдвигать её стенки, чтобы определить его положение с увеличивающейся точностью, вы обнаружите, что движение электрона будет становиться всё более и более неистовым. Электрон, будто охваченный своего рода клаустрофобией, будет возбуждаться всё сильнее — отскакивая от стенок коробки со всё возрастающей и непредсказуемой скоростью. Природа не позволяет загнать в угол свои компоненты. Как вы помните, в H-баре, где мы сделали значение
Соотношение неопределённостей лежит в основе ещё одного потрясающего явления, известного под названием
Чтобы понять это, представьте, что вы живёте в полной нищете и вдруг узнаёте, что ваш дальний родственник отошёл в лучший мир, оставив вам огромное состояние. Единственная проблема состоит в том, что у вас нет денег для покупки билета на самолёт. Вы объясняете ситуацию своим друзьям: если они помогут вам преодолеть барьер между вами и наследством, ссудив деньги на билет, вы вернёте им долг с процентами после возвращения. Но ни у кого нет денег, чтобы дать вам в долг. Тут вы вспоминаете про вашего старого друга, который работает в авиакомпании, и обращаетесь к нему с той же просьбой. Он тоже не может дать вам денег взаймы, но предлагает другое решение. Система учёта в авиакомпании такова, что если вы вышлете деньги в уплату за билет телеграфным переводом в течение 24 часов с момента прибытия в пункт назначения, никто не узнает, что вы не уплатили их до вылета.
Система учёта в квантовой механике довольно схожа с этой. Показав, что существует компромисс между точностью измерения местоположения и скорости, Гейзенберг, кроме того, продемонстрировал существование компромисса между точностью измерения энергии и тем,